初始裕度要求下McKean预期倒向随机微分方程的数值近似

Ankush Agarwal, S. Marco, E. Gobet, J. López-Salas, Fanny Noubiagain, Alexandre Zhou
{"title":"初始裕度要求下McKean预期倒向随机微分方程的数值近似","authors":"Ankush Agarwal, S. Marco, E. Gobet, J. López-Salas, Fanny Noubiagain, Alexandre Zhou","doi":"10.1051/PROC/201965001","DOIUrl":null,"url":null,"abstract":"We introduce a new class of anticipative backward stochastic differential equations with a dependence of McKean type on the law of the solution, that we name MKABSDE. We provide existence and uniqueness results in a general framework with relatively general regularity assumptions on the coefficients. We show how such stochastic equations arise within the modern paradigm of derivative pricing where a central counterparty (CCP) requires the members to deposit variation and initial margins to cover their exposure. In the case when the initial margin is proportional to the Conditional Value-at-Risk (CVaR) of the contract price, we apply our general result to define the price as a solution of a MKABSDE. We provide several linear and non-linear simpler approximations, which we solve using different numerical (deterministic and Monte-Carlo) methods.","PeriodicalId":53260,"journal":{"name":"ESAIM Proceedings and Surveys","volume":"62 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Numerical approximations of McKean anticipative backward stochastic differential equations arising in initial margin requirements\",\"authors\":\"Ankush Agarwal, S. Marco, E. Gobet, J. López-Salas, Fanny Noubiagain, Alexandre Zhou\",\"doi\":\"10.1051/PROC/201965001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a new class of anticipative backward stochastic differential equations with a dependence of McKean type on the law of the solution, that we name MKABSDE. We provide existence and uniqueness results in a general framework with relatively general regularity assumptions on the coefficients. We show how such stochastic equations arise within the modern paradigm of derivative pricing where a central counterparty (CCP) requires the members to deposit variation and initial margins to cover their exposure. In the case when the initial margin is proportional to the Conditional Value-at-Risk (CVaR) of the contract price, we apply our general result to define the price as a solution of a MKABSDE. We provide several linear and non-linear simpler approximations, which we solve using different numerical (deterministic and Monte-Carlo) methods.\",\"PeriodicalId\":53260,\"journal\":{\"name\":\"ESAIM Proceedings and Surveys\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ESAIM Proceedings and Surveys\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/PROC/201965001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESAIM Proceedings and Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/PROC/201965001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

我们引入了一类新的具有McKean型依赖于解律的期望倒向随机微分方程,我们将其命名为MKABSDE。我们在一般框架下给出了存在唯一性结果,并对系数作了相对一般的正则性假设。我们展示了这种随机方程是如何在衍生品定价的现代范式中出现的,其中中央对手方(CCP)要求成员存入变化和初始保证金以覆盖其风险敞口。在初始保证金与合同价格的条件风险价值(CVaR)成正比的情况下,我们应用一般结果将价格定义为MKABSDE的解。我们提供了几种线性和非线性的简单近似,我们使用不同的数值(确定性和蒙特卡罗)方法来求解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical approximations of McKean anticipative backward stochastic differential equations arising in initial margin requirements
We introduce a new class of anticipative backward stochastic differential equations with a dependence of McKean type on the law of the solution, that we name MKABSDE. We provide existence and uniqueness results in a general framework with relatively general regularity assumptions on the coefficients. We show how such stochastic equations arise within the modern paradigm of derivative pricing where a central counterparty (CCP) requires the members to deposit variation and initial margins to cover their exposure. In the case when the initial margin is proportional to the Conditional Value-at-Risk (CVaR) of the contract price, we apply our general result to define the price as a solution of a MKABSDE. We provide several linear and non-linear simpler approximations, which we solve using different numerical (deterministic and Monte-Carlo) methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信