后触点同余

Pub Date : 2021-10-12 DOI:10.36045/j.bbms.210412a
G. Serafin
{"title":"后触点同余","authors":"G. Serafin","doi":"10.36045/j.bbms.210412a","DOIUrl":null,"url":null,"abstract":"The celebrated Touchard congruence states that Bn+p ≡ Bn + Bn+1 modulo p, where p is a prime number and Bn denotes the Bell number. In this paper we study divisibility properties of Bn−p and their generalizations involving higher powers of p as well as the r-Bell numbers. In particular, we show a closely relation of the considered problem to the Sun-Zagier congruence, which is additionally improved by deriving a new relation between r-Bell and derangement numbers. Finally, we conclude some results on the period of the Bell numbers modulo p.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Backward Touchard congruence\",\"authors\":\"G. Serafin\",\"doi\":\"10.36045/j.bbms.210412a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The celebrated Touchard congruence states that Bn+p ≡ Bn + Bn+1 modulo p, where p is a prime number and Bn denotes the Bell number. In this paper we study divisibility properties of Bn−p and their generalizations involving higher powers of p as well as the r-Bell numbers. In particular, we show a closely relation of the considered problem to the Sun-Zagier congruence, which is additionally improved by deriving a new relation between r-Bell and derangement numbers. Finally, we conclude some results on the period of the Bell numbers modulo p.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.36045/j.bbms.210412a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.36045/j.bbms.210412a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

著名的Touchard同余说明Bn+p≡Bn+ Bn+1模p,其中p是素数,Bn表示贝尔数。本文研究了Bn - p的可整除性质及其在p的高次幂和r-贝尔数中的推广。特别地,我们证明了所考虑的问题与Sun-Zagier同余的密切关系,并通过推导r-Bell与差数之间的新关系进一步改进了这一关系。最后,我们得到了关于贝尔数模p周期的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Backward Touchard congruence
The celebrated Touchard congruence states that Bn+p ≡ Bn + Bn+1 modulo p, where p is a prime number and Bn denotes the Bell number. In this paper we study divisibility properties of Bn−p and their generalizations involving higher powers of p as well as the r-Bell numbers. In particular, we show a closely relation of the considered problem to the Sun-Zagier congruence, which is additionally improved by deriving a new relation between r-Bell and derangement numbers. Finally, we conclude some results on the period of the Bell numbers modulo p.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信