{"title":"在最小非平凡单群的三倍上","authors":"Serge Lvovski","doi":"10.2422/2036-2145.202204_004","DOIUrl":null,"url":null,"abstract":". Using an adjunction-theoretic result due to A. J. Sommese together with a proposition from SGA7, we obtain a complete list of smooth threefolds for which the monodromy group acting on H 2 of its smooth hyperplane section is Z / 2 Z . The possibility of such a classification was announced by F. L. Zak in 1991.","PeriodicalId":8132,"journal":{"name":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","volume":"139 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On threefolds with the smallest nontrivial monodromy group\",\"authors\":\"Serge Lvovski\",\"doi\":\"10.2422/2036-2145.202204_004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Using an adjunction-theoretic result due to A. J. Sommese together with a proposition from SGA7, we obtain a complete list of smooth threefolds for which the monodromy group acting on H 2 of its smooth hyperplane section is Z / 2 Z . The possibility of such a classification was announced by F. L. Zak in 1991.\",\"PeriodicalId\":8132,\"journal\":{\"name\":\"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE\",\"volume\":\"139 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2422/2036-2145.202204_004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2422/2036-2145.202204_004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
. 利用a . J. Sommese的一个合论结果和SGA7的一个命题,我们得到了一个光滑三折的完整列表,其中作用在其光滑超平面截面h2上的单群为Z / 2z。这种分类的可能性是由f·l·扎克在1991年宣布的。
On threefolds with the smallest nontrivial monodromy group
. Using an adjunction-theoretic result due to A. J. Sommese together with a proposition from SGA7, we obtain a complete list of smooth threefolds for which the monodromy group acting on H 2 of its smooth hyperplane section is Z / 2 Z . The possibility of such a classification was announced by F. L. Zak in 1991.