$\mathbb{S}^{2}$上平均场方程的多重轴对称解

IF 0.4 Q4 MATHEMATICS
Zhuoran Du
{"title":"$\\mathbb{S}^{2}$上平均场方程的多重轴对称解","authors":"Zhuoran Du","doi":"10.4208/ata.oa-0016","DOIUrl":null,"url":null,"abstract":"We study the following mean field equation ∆gu + ρ ( eu ∫ S2 e udμ − 1 4π ) = 0 in S2, where ρ is a real parameter. We obtain the existence of multiple axially asymmetric solutions bifurcating from u = 0 at the values ρ = 4n(n + 1)π for any odd integer n ≥ 3.","PeriodicalId":29763,"journal":{"name":"Analysis in Theory and Applications","volume":"23 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multiple Axially Asymmetric Solutions to a Mean Field Equation on $\\\\mathbb{S}^{2}$\",\"authors\":\"Zhuoran Du\",\"doi\":\"10.4208/ata.oa-0016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the following mean field equation ∆gu + ρ ( eu ∫ S2 e udμ − 1 4π ) = 0 in S2, where ρ is a real parameter. We obtain the existence of multiple axially asymmetric solutions bifurcating from u = 0 at the values ρ = 4n(n + 1)π for any odd integer n ≥ 3.\",\"PeriodicalId\":29763,\"journal\":{\"name\":\"Analysis in Theory and Applications\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis in Theory and Applications\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://doi.org/10.4208/ata.oa-0016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis in Theory and Applications","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.4208/ata.oa-0016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

我们研究了S2中的平均场方程∆gu + ρ (eu∫S2 e udμ−1 4π) = 0,其中ρ是实参数。我们得到了对于任意奇数n≥3,在ρ = 4n(n + 1)π处从u = 0分叉的多个轴对称解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple Axially Asymmetric Solutions to a Mean Field Equation on $\mathbb{S}^{2}$
We study the following mean field equation ∆gu + ρ ( eu ∫ S2 e udμ − 1 4π ) = 0 in S2, where ρ is a real parameter. We obtain the existence of multiple axially asymmetric solutions bifurcating from u = 0 at the values ρ = 4n(n + 1)π for any odd integer n ≥ 3.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
747
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信