Yudi Widhiyasana, Transmissia Semiawan, Ilham Gibran Achmad Mudzakir, Muhammad Randi Noor
{"title":"Penerapan Convolutional Long Short-Term Memory untuk Klasifikasi Teks Berita Bahasa Indonesia","authors":"Yudi Widhiyasana, Transmissia Semiawan, Ilham Gibran Achmad Mudzakir, Muhammad Randi Noor","doi":"10.22146/jnteti.v10i4.2438","DOIUrl":null,"url":null,"abstract":"Klasifikasi teks saat ini telah menjadi sebuah bidang yang banyak diteliti, khususnya terkait Natural Language Processing (NLP). Terdapat banyak metode yang dapat dimanfaatkan untuk melakukan klasifikasi teks, salah satunya adalah metode deep learning. RNN, CNN, dan LSTM merupakan beberapa metode deep learning yang umum digunakan untuk mengklasifikasikan teks. Makalah ini bertujuan menganalisis penerapan kombinasi dua buah metode deep learning, yaitu CNN dan LSTM (C-LSTM). Kombinasi kedua metode tersebut dimanfaatkan untuk melakukan klasifikasi teks berita bahasa Indonesia. Data yang digunakan adalah teks berita bahasa Indonesia yang dikumpulkan dari portal-portal berita berbahasa Indonesia. Data yang dikumpulkan dikelompokkan menjadi tiga kategori berita berdasarkan lingkupnya, yaitu “Nasional”, “Internasional”, dan “Regional”. Dalam makalah ini dilakukan eksperimen pada tiga buah variabel penelitian, yaitu jumlah dokumen, ukuran batch, dan nilai learning rate dari C-LSTM yang dibangun. Hasil eksperimen menunjukkan bahwa nilai F1-score yang diperoleh dari hasil klasifikasi menggunakan metode C-LSTM adalah sebesar 93,27%. Nilai F1-score yang dihasilkan oleh metode C-LSTM lebih besar dibandingkan dengan CNN, dengan nilai 89,85%, dan LSTM, dengan nilai 90,87%. Dengan demikian, dapat disimpulkan bahwa kombinasi dua metode deep learning, yaitu CNN dan LSTM (C-LSTM),memiliki kinerja yang lebih baik dibandingkan dengan CNN dan LSTM.","PeriodicalId":31477,"journal":{"name":"Jurnal Nasional Teknik Elektro dan Teknologi Informasi","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Nasional Teknik Elektro dan Teknologi Informasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/jnteti.v10i4.2438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

目前,文本的分类已经成为一个广泛研究的领域,特别是与自然语言处理相关的领域。有许多方法可以用来对文本进行分类,其中之一是深度学习的方法。RNN、CNN和LSTM是几种常用的深度学习方法,用来对文本进行分类。本文旨在分析CNN和LSTM (C-LSTM)这两种深度学习方法的结合实施。这两种方法的组合被用来对印尼语新闻文本进行分类。使用的数据是从印尼新闻门户收集的印尼新闻文本。收集的数据根据其内容分为三类新闻,即“国家”、“国际”和“地区”。在本文中,他对建立在C-LSTM上的三个研究变量进行了实验。实验结果表明,从C-LSTM方法分类中获得的f1 -得分值为93.27%。C-LSTM方法产生的f1分数比CNN高89.85%,LSTM高90.87%。因此,我们可以得出结论,结合CNN和LSTM (C-LSTM)这两种深层次学习方法,比CNN和LSTM效果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Penerapan Convolutional Long Short-Term Memory untuk Klasifikasi Teks Berita Bahasa Indonesia
Klasifikasi teks saat ini telah menjadi sebuah bidang yang banyak diteliti, khususnya terkait Natural Language Processing (NLP). Terdapat banyak metode yang dapat dimanfaatkan untuk melakukan klasifikasi teks, salah satunya adalah metode deep learning. RNN, CNN, dan LSTM merupakan beberapa metode deep learning yang umum digunakan untuk mengklasifikasikan teks. Makalah ini bertujuan menganalisis penerapan kombinasi dua buah metode deep learning, yaitu CNN dan LSTM (C-LSTM). Kombinasi kedua metode tersebut dimanfaatkan untuk melakukan klasifikasi teks berita bahasa Indonesia. Data yang digunakan adalah teks berita bahasa Indonesia yang dikumpulkan dari portal-portal berita berbahasa Indonesia. Data yang dikumpulkan dikelompokkan menjadi tiga kategori berita berdasarkan lingkupnya, yaitu “Nasional”, “Internasional”, dan “Regional”. Dalam makalah ini dilakukan eksperimen pada tiga buah variabel penelitian, yaitu jumlah dokumen, ukuran batch, dan nilai learning rate dari C-LSTM yang dibangun. Hasil eksperimen menunjukkan bahwa nilai F1-score yang diperoleh dari hasil klasifikasi menggunakan metode C-LSTM adalah sebesar 93,27%. Nilai F1-score yang dihasilkan oleh metode C-LSTM lebih besar dibandingkan dengan CNN, dengan nilai 89,85%, dan LSTM, dengan nilai 90,87%. Dengan demikian, dapat disimpulkan bahwa kombinasi dua metode deep learning, yaitu CNN dan LSTM (C-LSTM),memiliki kinerja yang lebih baik dibandingkan dengan CNN dan LSTM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信