用于温度传感的溶液处理介电薄膜和Au射频天线

Sujan Aryal, D. Biswas, R. Mehta, I. Mahbub, A. Kaul
{"title":"用于温度传感的溶液处理介电薄膜和Au射频天线","authors":"Sujan Aryal, D. Biswas, R. Mehta, I. Mahbub, A. Kaul","doi":"10.1117/12.2633159","DOIUrl":null,"url":null,"abstract":"Sensing temperature is important for a wide variety of applications such as control systems and instrumentation which are integral to various industrial sectors and in research settings. To date, many prior studies have favored the use of the resistive thermistor approach given its simplicity. However, such devices are less sensitive to temperature changes compared to frequency-dependent approaches which are gaining momentum for detection. The importance of high sensitivity and reliable methods using a frequency-based approach for detecting temperature changes should thus be apparent, particularly if such sensors are also fabricated using low-cost approaches which are amenable toward miniaturized wireless platforms at the same time. In this study, Au rectangular single-arm spiral antennas with varying sizes were fabricated and RF S-parameter measurements were conducted over the frequency range of 300 kHz to 20 GHz. Solution-processed, two-dimensional (2D) hexagonal boron nitride (h-BN) was used with cyclohexanone and terpineol as solvents, and the films were characterized using dc current-voltage and frequency-dependent capacitance measurements. We also characterized our solution-processed h-BN films using Raman spectroscopy. The shift in the resonant frequency through the addition of h-BN over the underlying Au antenna was observed as this dielectric was coated on top of the antennas and the temperature response of the resonance frequency was measured. Alongside the experimental measurements, we also present results from our simulation analysis conducted using High Frequency Structure Simulator (HFSS) from ANSYS.","PeriodicalId":13820,"journal":{"name":"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)","volume":"808 1","pages":"1220007 - 1220007-5"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solution-processed dielectric films and Au RF antenna for temperature sensing\",\"authors\":\"Sujan Aryal, D. Biswas, R. Mehta, I. Mahbub, A. Kaul\",\"doi\":\"10.1117/12.2633159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sensing temperature is important for a wide variety of applications such as control systems and instrumentation which are integral to various industrial sectors and in research settings. To date, many prior studies have favored the use of the resistive thermistor approach given its simplicity. However, such devices are less sensitive to temperature changes compared to frequency-dependent approaches which are gaining momentum for detection. The importance of high sensitivity and reliable methods using a frequency-based approach for detecting temperature changes should thus be apparent, particularly if such sensors are also fabricated using low-cost approaches which are amenable toward miniaturized wireless platforms at the same time. In this study, Au rectangular single-arm spiral antennas with varying sizes were fabricated and RF S-parameter measurements were conducted over the frequency range of 300 kHz to 20 GHz. Solution-processed, two-dimensional (2D) hexagonal boron nitride (h-BN) was used with cyclohexanone and terpineol as solvents, and the films were characterized using dc current-voltage and frequency-dependent capacitance measurements. We also characterized our solution-processed h-BN films using Raman spectroscopy. The shift in the resonant frequency through the addition of h-BN over the underlying Au antenna was observed as this dielectric was coated on top of the antennas and the temperature response of the resonance frequency was measured. Alongside the experimental measurements, we also present results from our simulation analysis conducted using High Frequency Structure Simulator (HFSS) from ANSYS.\",\"PeriodicalId\":13820,\"journal\":{\"name\":\"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)\",\"volume\":\"808 1\",\"pages\":\"1220007 - 1220007-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2633159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2633159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

温度传感对于各种各样的应用都很重要,例如控制系统和仪器仪表,它们是各种工业部门和研究环境中不可或缺的一部分。迄今为止,许多先前的研究都赞成使用电阻热敏电阻方法,因为它的简单性。然而,与频率相关的检测方法相比,这种设备对温度变化的敏感度较低。因此,使用基于频率的方法来检测温度变化的高灵敏度和可靠方法的重要性应该是显而易见的,特别是如果这种传感器也使用同时适用于小型化无线平台的低成本方法制造。在本研究中,制作了不同尺寸的Au矩形单臂螺旋天线,并在300 kHz至20 GHz的频率范围内进行了射频s参数测量。采用溶液处理的二维(2D)六方氮化硼(h-BN)与环己酮和松油醇为溶剂,通过直流电压和频率相关电容测量对薄膜进行了表征。我们还使用拉曼光谱对溶液处理的h-BN薄膜进行了表征。通过在Au天线上添加h-BN观察到谐振频率的移位,因为这种介质被涂在天线的顶部,并且测量了谐振频率的温度响应。除了实验测量外,我们还介绍了使用ANSYS的高频结构模拟器(HFSS)进行的仿真分析结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solution-processed dielectric films and Au RF antenna for temperature sensing
Sensing temperature is important for a wide variety of applications such as control systems and instrumentation which are integral to various industrial sectors and in research settings. To date, many prior studies have favored the use of the resistive thermistor approach given its simplicity. However, such devices are less sensitive to temperature changes compared to frequency-dependent approaches which are gaining momentum for detection. The importance of high sensitivity and reliable methods using a frequency-based approach for detecting temperature changes should thus be apparent, particularly if such sensors are also fabricated using low-cost approaches which are amenable toward miniaturized wireless platforms at the same time. In this study, Au rectangular single-arm spiral antennas with varying sizes were fabricated and RF S-parameter measurements were conducted over the frequency range of 300 kHz to 20 GHz. Solution-processed, two-dimensional (2D) hexagonal boron nitride (h-BN) was used with cyclohexanone and terpineol as solvents, and the films were characterized using dc current-voltage and frequency-dependent capacitance measurements. We also characterized our solution-processed h-BN films using Raman spectroscopy. The shift in the resonant frequency through the addition of h-BN over the underlying Au antenna was observed as this dielectric was coated on top of the antennas and the temperature response of the resonance frequency was measured. Alongside the experimental measurements, we also present results from our simulation analysis conducted using High Frequency Structure Simulator (HFSS) from ANSYS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信