美国、俄罗斯、英国、巴西、法国和印度在不接种COVID-19疫苗的情况下应用SEIR模型

Q3 Mathematics
Marwan Al-Raeei, M. S. El-daher, Oliya Solieva
{"title":"美国、俄罗斯、英国、巴西、法国和印度在不接种COVID-19疫苗的情况下应用SEIR模型","authors":"Marwan Al-Raeei, M. S. El-daher, Oliya Solieva","doi":"10.1515/em-2020-0036","DOIUrl":null,"url":null,"abstract":"Abstract Objectives: Compartmental models are helpful tools to simulate and predict the spread of infectious diseases. In this work we use the SEIR model to discuss the spreading of COVID-19 pandemic for countries with the most confirmed cases up to the end of 2020, i.e. the United States, Russia, the United Kingdom, France, Brazil, and India. The simulation considers the susceptible, exposed, infective, and the recovered cases of the disease. Method: We employ the order Runge–Kutta method to solve the SIER model equations-for modelling and forecasting the spread of the new coronavirus disease. The parameters used in this work are based on the confirmed cases from the real data available for the countries reporting most cases up to December 29, 2020. Results: We extracted the coefficients of the exposed, infected, recovered and mortality rate of the SEIR model by fitting the collected real data of the new coronavirus disease up to December 29, 2020 in the countries with the most cases. We predict the dates of the peak of the infection and the basic reproduction number for the countries studied here. We foresee COVID-19 peaks in January-February 2021 in Brazil and the United Kingdom, and in February-March 2021 in France, Russia, and India, and in March-April 2021 in the United States. Also, we find that the average value of the SARS-CoV-2 basic reproduction number is 2.1460. Conclusion: We find that the predicted peak infection of COVID-19 will happen in the first half of 2021 in the six considered countries. The basic SARS-CoV-19 reproduction number values range within 1.0158–3.6642 without vaccination.","PeriodicalId":37999,"journal":{"name":"Epidemiologic Methods","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Applying SEIR model without vaccination for COVID-19 in case of the United States, Russia, the United Kingdom, Brazil, France, and India\",\"authors\":\"Marwan Al-Raeei, M. S. El-daher, Oliya Solieva\",\"doi\":\"10.1515/em-2020-0036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Objectives: Compartmental models are helpful tools to simulate and predict the spread of infectious diseases. In this work we use the SEIR model to discuss the spreading of COVID-19 pandemic for countries with the most confirmed cases up to the end of 2020, i.e. the United States, Russia, the United Kingdom, France, Brazil, and India. The simulation considers the susceptible, exposed, infective, and the recovered cases of the disease. Method: We employ the order Runge–Kutta method to solve the SIER model equations-for modelling and forecasting the spread of the new coronavirus disease. The parameters used in this work are based on the confirmed cases from the real data available for the countries reporting most cases up to December 29, 2020. Results: We extracted the coefficients of the exposed, infected, recovered and mortality rate of the SEIR model by fitting the collected real data of the new coronavirus disease up to December 29, 2020 in the countries with the most cases. We predict the dates of the peak of the infection and the basic reproduction number for the countries studied here. We foresee COVID-19 peaks in January-February 2021 in Brazil and the United Kingdom, and in February-March 2021 in France, Russia, and India, and in March-April 2021 in the United States. Also, we find that the average value of the SARS-CoV-2 basic reproduction number is 2.1460. Conclusion: We find that the predicted peak infection of COVID-19 will happen in the first half of 2021 in the six considered countries. The basic SARS-CoV-19 reproduction number values range within 1.0158–3.6642 without vaccination.\",\"PeriodicalId\":37999,\"journal\":{\"name\":\"Epidemiologic Methods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epidemiologic Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/em-2020-0036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemiologic Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/em-2020-0036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 8

摘要

目的:区室模型是模拟和预测传染病传播的有效工具。在这项工作中,我们使用SEIR模型讨论了截至2020年底确诊病例最多的国家(即美国、俄罗斯、英国、法国、巴西和印度)COVID-19大流行的传播情况。该模拟考虑了该疾病的易感、暴露、感染和恢复病例。方法:采用阶龙格-库塔法求解SIER模型方程,对新型冠状病毒的传播进行建模和预测。本工作中使用的参数基于截至2020年12月29日报告病例最多的国家可获得的真实数据中的确诊病例。结果:通过拟合收集到的截至2020年12月29日病例最多的国家的新型冠状病毒病真实数据,提取了SEIR模型的暴露率、感染率、康复率和死亡率系数。我们预测了感染高峰的日期和这里研究的国家的基本繁殖数。我们预计2021年1月至2月巴西和英国、2021年2月至3月法国、俄罗斯和印度以及2021年3月至4月美国将出现COVID-19高峰。SARS-CoV-2基本复制数的平均值为2.1460。结论:我们发现,预测的COVID-19感染高峰将出现在2021年上半年。在不接种疫苗的情况下,SARS-CoV-19的基本繁殖数值在1.0158-3.6642之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applying SEIR model without vaccination for COVID-19 in case of the United States, Russia, the United Kingdom, Brazil, France, and India
Abstract Objectives: Compartmental models are helpful tools to simulate and predict the spread of infectious diseases. In this work we use the SEIR model to discuss the spreading of COVID-19 pandemic for countries with the most confirmed cases up to the end of 2020, i.e. the United States, Russia, the United Kingdom, France, Brazil, and India. The simulation considers the susceptible, exposed, infective, and the recovered cases of the disease. Method: We employ the order Runge–Kutta method to solve the SIER model equations-for modelling and forecasting the spread of the new coronavirus disease. The parameters used in this work are based on the confirmed cases from the real data available for the countries reporting most cases up to December 29, 2020. Results: We extracted the coefficients of the exposed, infected, recovered and mortality rate of the SEIR model by fitting the collected real data of the new coronavirus disease up to December 29, 2020 in the countries with the most cases. We predict the dates of the peak of the infection and the basic reproduction number for the countries studied here. We foresee COVID-19 peaks in January-February 2021 in Brazil and the United Kingdom, and in February-March 2021 in France, Russia, and India, and in March-April 2021 in the United States. Also, we find that the average value of the SARS-CoV-2 basic reproduction number is 2.1460. Conclusion: We find that the predicted peak infection of COVID-19 will happen in the first half of 2021 in the six considered countries. The basic SARS-CoV-19 reproduction number values range within 1.0158–3.6642 without vaccination.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Epidemiologic Methods
Epidemiologic Methods Mathematics-Applied Mathematics
CiteScore
2.10
自引率
0.00%
发文量
7
期刊介绍: Epidemiologic Methods (EM) seeks contributions comparable to those of the leading epidemiologic journals, but also invites papers that may be more technical or of greater length than what has traditionally been allowed by journals in epidemiology. Applications and examples with real data to illustrate methodology are strongly encouraged but not required. Topics. genetic epidemiology, infectious disease, pharmaco-epidemiology, ecologic studies, environmental exposures, screening, surveillance, social networks, comparative effectiveness, statistical modeling, causal inference, measurement error, study design, meta-analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信