利用贝叶斯自编码器识别飞机着陆轨迹中的异常行为

IF 1.3 4区 工程技术 Q2 ENGINEERING, AEROSPACE
Yingxiao Kong, S. Mahadevan
{"title":"利用贝叶斯自编码器识别飞机着陆轨迹中的异常行为","authors":"Yingxiao Kong, S. Mahadevan","doi":"10.2514/1.i011178","DOIUrl":null,"url":null,"abstract":"Anomalous behavior during the aircraft landing phase can significantly increase the probability of adverse events. Automated anomaly detection during the landing phase can help aviation safety-related organizations to efficiently detect anomalous behavior and consider mitigation strategies. This paper develops a Bayesian autoencoder neural network model to identify anomalous behavior in landing trajectories by reconstructing the flight data because the reconstruction error is larger for anomalous flights. Different loss functions, such as Huber loss, mean squared error loss, and least trimmed squares are investigated to construct the Bayesian autoencoder model; and their performances are compared using different measures: the mean of the reconstruction error, the standard deviation of the reconstruction error, and both the mean and standard deviation of the reconstruction error. Different loss function-based models show differences in performance, depending on which measure is used for anomaly detection; among all the options considered, one of the Huber loss options appears to give the best performance, as indicated by the F1 score. Furthermore, the mean and standard deviation of the reconstruction error for a single flight are used to identify the time of occurrence and the flight parameters related to anomalous behavior.","PeriodicalId":50260,"journal":{"name":"Journal of Aerospace Information Systems","volume":"10 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying Anomalous Behavior in Aircraft Landing Trajectory Using a Bayesian Autoencoder\",\"authors\":\"Yingxiao Kong, S. Mahadevan\",\"doi\":\"10.2514/1.i011178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anomalous behavior during the aircraft landing phase can significantly increase the probability of adverse events. Automated anomaly detection during the landing phase can help aviation safety-related organizations to efficiently detect anomalous behavior and consider mitigation strategies. This paper develops a Bayesian autoencoder neural network model to identify anomalous behavior in landing trajectories by reconstructing the flight data because the reconstruction error is larger for anomalous flights. Different loss functions, such as Huber loss, mean squared error loss, and least trimmed squares are investigated to construct the Bayesian autoencoder model; and their performances are compared using different measures: the mean of the reconstruction error, the standard deviation of the reconstruction error, and both the mean and standard deviation of the reconstruction error. Different loss function-based models show differences in performance, depending on which measure is used for anomaly detection; among all the options considered, one of the Huber loss options appears to give the best performance, as indicated by the F1 score. Furthermore, the mean and standard deviation of the reconstruction error for a single flight are used to identify the time of occurrence and the flight parameters related to anomalous behavior.\",\"PeriodicalId\":50260,\"journal\":{\"name\":\"Journal of Aerospace Information Systems\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Aerospace Information Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2514/1.i011178\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aerospace Information Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2514/1.i011178","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

飞机着陆阶段的异常行为会显著增加不良事件发生的概率。着陆阶段的自动异常检测可以帮助航空安全相关组织有效地检测异常行为并考虑缓解策略。针对异常飞行的重构误差较大的问题,本文提出了一种贝叶斯自编码器神经网络模型,通过对飞行数据的重构来识别着陆轨迹中的异常行为。研究了不同的损失函数,如Huber损失、均方误差损失和最小裁剪平方,以构建贝叶斯自编码器模型;并采用重建误差的均值、重建误差的标准差、重建误差的均值和标准差对它们的性能进行了比较。不同的基于损失函数的模型表现出不同的性能,这取决于用于异常检测的度量;在所有考虑的选项中,其中一个Huber损失选项似乎给出了最好的性能,正如F1分数所示。此外,利用单次飞行重建误差的均值和标准差来识别异常发生时间和与异常行为相关的飞行参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identifying Anomalous Behavior in Aircraft Landing Trajectory Using a Bayesian Autoencoder
Anomalous behavior during the aircraft landing phase can significantly increase the probability of adverse events. Automated anomaly detection during the landing phase can help aviation safety-related organizations to efficiently detect anomalous behavior and consider mitigation strategies. This paper develops a Bayesian autoencoder neural network model to identify anomalous behavior in landing trajectories by reconstructing the flight data because the reconstruction error is larger for anomalous flights. Different loss functions, such as Huber loss, mean squared error loss, and least trimmed squares are investigated to construct the Bayesian autoencoder model; and their performances are compared using different measures: the mean of the reconstruction error, the standard deviation of the reconstruction error, and both the mean and standard deviation of the reconstruction error. Different loss function-based models show differences in performance, depending on which measure is used for anomaly detection; among all the options considered, one of the Huber loss options appears to give the best performance, as indicated by the F1 score. Furthermore, the mean and standard deviation of the reconstruction error for a single flight are used to identify the time of occurrence and the flight parameters related to anomalous behavior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
13.30%
发文量
58
审稿时长
>12 weeks
期刊介绍: This Journal is devoted to the dissemination of original archival research papers describing new theoretical developments, novel applications, and case studies regarding advances in aerospace computing, information, and networks and communication systems that address aerospace-specific issues. Issues related to signal processing, electromagnetics, antenna theory, and the basic networking hardware transmission technologies of a network are not within the scope of this journal. Topics include aerospace systems and software engineering; verification and validation of embedded systems; the field known as ‘big data,’ data analytics, machine learning, and knowledge management for aerospace systems; human-automation interaction and systems health management for aerospace systems. Applications of autonomous systems, systems engineering principles, and safety and mission assurance are of particular interest. The Journal also features Technical Notes that discuss particular technical innovations or applications in the topics described above. Papers are also sought that rigorously review the results of recent research developments. In addition to original research papers and reviews, the journal publishes articles that review books, conferences, social media, and new educational modes applicable to the scope of the Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信