{"title":"利用贝叶斯自编码器识别飞机着陆轨迹中的异常行为","authors":"Yingxiao Kong, S. Mahadevan","doi":"10.2514/1.i011178","DOIUrl":null,"url":null,"abstract":"Anomalous behavior during the aircraft landing phase can significantly increase the probability of adverse events. Automated anomaly detection during the landing phase can help aviation safety-related organizations to efficiently detect anomalous behavior and consider mitigation strategies. This paper develops a Bayesian autoencoder neural network model to identify anomalous behavior in landing trajectories by reconstructing the flight data because the reconstruction error is larger for anomalous flights. Different loss functions, such as Huber loss, mean squared error loss, and least trimmed squares are investigated to construct the Bayesian autoencoder model; and their performances are compared using different measures: the mean of the reconstruction error, the standard deviation of the reconstruction error, and both the mean and standard deviation of the reconstruction error. Different loss function-based models show differences in performance, depending on which measure is used for anomaly detection; among all the options considered, one of the Huber loss options appears to give the best performance, as indicated by the F1 score. Furthermore, the mean and standard deviation of the reconstruction error for a single flight are used to identify the time of occurrence and the flight parameters related to anomalous behavior.","PeriodicalId":50260,"journal":{"name":"Journal of Aerospace Information Systems","volume":"10 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying Anomalous Behavior in Aircraft Landing Trajectory Using a Bayesian Autoencoder\",\"authors\":\"Yingxiao Kong, S. Mahadevan\",\"doi\":\"10.2514/1.i011178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anomalous behavior during the aircraft landing phase can significantly increase the probability of adverse events. Automated anomaly detection during the landing phase can help aviation safety-related organizations to efficiently detect anomalous behavior and consider mitigation strategies. This paper develops a Bayesian autoencoder neural network model to identify anomalous behavior in landing trajectories by reconstructing the flight data because the reconstruction error is larger for anomalous flights. Different loss functions, such as Huber loss, mean squared error loss, and least trimmed squares are investigated to construct the Bayesian autoencoder model; and their performances are compared using different measures: the mean of the reconstruction error, the standard deviation of the reconstruction error, and both the mean and standard deviation of the reconstruction error. Different loss function-based models show differences in performance, depending on which measure is used for anomaly detection; among all the options considered, one of the Huber loss options appears to give the best performance, as indicated by the F1 score. Furthermore, the mean and standard deviation of the reconstruction error for a single flight are used to identify the time of occurrence and the flight parameters related to anomalous behavior.\",\"PeriodicalId\":50260,\"journal\":{\"name\":\"Journal of Aerospace Information Systems\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Aerospace Information Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2514/1.i011178\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aerospace Information Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2514/1.i011178","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Identifying Anomalous Behavior in Aircraft Landing Trajectory Using a Bayesian Autoencoder
Anomalous behavior during the aircraft landing phase can significantly increase the probability of adverse events. Automated anomaly detection during the landing phase can help aviation safety-related organizations to efficiently detect anomalous behavior and consider mitigation strategies. This paper develops a Bayesian autoencoder neural network model to identify anomalous behavior in landing trajectories by reconstructing the flight data because the reconstruction error is larger for anomalous flights. Different loss functions, such as Huber loss, mean squared error loss, and least trimmed squares are investigated to construct the Bayesian autoencoder model; and their performances are compared using different measures: the mean of the reconstruction error, the standard deviation of the reconstruction error, and both the mean and standard deviation of the reconstruction error. Different loss function-based models show differences in performance, depending on which measure is used for anomaly detection; among all the options considered, one of the Huber loss options appears to give the best performance, as indicated by the F1 score. Furthermore, the mean and standard deviation of the reconstruction error for a single flight are used to identify the time of occurrence and the flight parameters related to anomalous behavior.
期刊介绍:
This Journal is devoted to the dissemination of original archival research papers describing new theoretical developments, novel applications, and case studies regarding advances in aerospace computing, information, and networks and communication systems that address aerospace-specific issues. Issues related to signal processing, electromagnetics, antenna theory, and the basic networking hardware transmission technologies of a network are not within the scope of this journal. Topics include aerospace systems and software engineering; verification and validation of embedded systems; the field known as ‘big data,’ data analytics, machine learning, and knowledge management for aerospace systems; human-automation interaction and systems health management for aerospace systems. Applications of autonomous systems, systems engineering principles, and safety and mission assurance are of particular interest. The Journal also features Technical Notes that discuss particular technical innovations or applications in the topics described above. Papers are also sought that rigorously review the results of recent research developments. In addition to original research papers and reviews, the journal publishes articles that review books, conferences, social media, and new educational modes applicable to the scope of the Journal.