Fabio Ricardo Llorella, Eduardo Iáñez, J. Azorín, Gustavo Patow
{"title":"基于卷积神经网络的脑电图信号视觉想象二进制判别器","authors":"Fabio Ricardo Llorella, Eduardo Iáñez, J. Azorín, Gustavo Patow","doi":"10.4995/RIAI.2021.14987","DOIUrl":null,"url":null,"abstract":"Las interfaces cerebro-máquina (Brain-Computer Intarface, BCI, en inglés) son una tecnología que permite la comunicación directa entre el cerebro y el mundo exterior sin necesidad de utilizar el sistema nervioso periferico. La mayoría de sistemas BCI se centran en la utilización de la imaginación motora, los potenciales evocados o los ritmos corticales lentos. En este trabajo se ha estudiado la posibilidad de utilizar la imaginación visual para construir un discriminador binario (brain-switch, en inglés). Concretamente, a partir del registro de señales EEG de siete personas mientras imaginaban siete figuras geométricas, se ha desarrollado un BCI basado en redes neuronales convolucionales y en la densidad de potencia espectral en la banda α (8-12 Hz), que ha conseguido distinguir entre la imaginación de una figura geométrica cualquiera y el relax, con un acierto promedio del 91 %, con un valor Kappa de Cohen de 0.77 y un porcentaje de falsos positivos del 9 %.","PeriodicalId":54463,"journal":{"name":"Revista Iberoamericana De Automatica E Informatica Industrial","volume":"6 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discriminador binario de imaginación visual a partir de señales EEG basado en redes neuronales convolucionales\",\"authors\":\"Fabio Ricardo Llorella, Eduardo Iáñez, J. Azorín, Gustavo Patow\",\"doi\":\"10.4995/RIAI.2021.14987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Las interfaces cerebro-máquina (Brain-Computer Intarface, BCI, en inglés) son una tecnología que permite la comunicación directa entre el cerebro y el mundo exterior sin necesidad de utilizar el sistema nervioso periferico. La mayoría de sistemas BCI se centran en la utilización de la imaginación motora, los potenciales evocados o los ritmos corticales lentos. En este trabajo se ha estudiado la posibilidad de utilizar la imaginación visual para construir un discriminador binario (brain-switch, en inglés). Concretamente, a partir del registro de señales EEG de siete personas mientras imaginaban siete figuras geométricas, se ha desarrollado un BCI basado en redes neuronales convolucionales y en la densidad de potencia espectral en la banda α (8-12 Hz), que ha conseguido distinguir entre la imaginación de una figura geométrica cualquiera y el relax, con un acierto promedio del 91 %, con un valor Kappa de Cohen de 0.77 y un porcentaje de falsos positivos del 9 %.\",\"PeriodicalId\":54463,\"journal\":{\"name\":\"Revista Iberoamericana De Automatica E Informatica Industrial\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Iberoamericana De Automatica E Informatica Industrial\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.4995/RIAI.2021.14987\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Iberoamericana De Automatica E Informatica Industrial","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4995/RIAI.2021.14987","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Discriminador binario de imaginación visual a partir de señales EEG basado en redes neuronales convolucionales
Las interfaces cerebro-máquina (Brain-Computer Intarface, BCI, en inglés) son una tecnología que permite la comunicación directa entre el cerebro y el mundo exterior sin necesidad de utilizar el sistema nervioso periferico. La mayoría de sistemas BCI se centran en la utilización de la imaginación motora, los potenciales evocados o los ritmos corticales lentos. En este trabajo se ha estudiado la posibilidad de utilizar la imaginación visual para construir un discriminador binario (brain-switch, en inglés). Concretamente, a partir del registro de señales EEG de siete personas mientras imaginaban siete figuras geométricas, se ha desarrollado un BCI basado en redes neuronales convolucionales y en la densidad de potencia espectral en la banda α (8-12 Hz), que ha conseguido distinguir entre la imaginación de una figura geométrica cualquiera y el relax, con un acierto promedio del 91 %, con un valor Kappa de Cohen de 0.77 y un porcentaje de falsos positivos del 9 %.
期刊介绍:
La Revista Iberoamericana de Automática e Informática Industrial (RIAI) es el órgano de expresión del Comité Español de Automática (CEA), miembro de la Federación Internacional de Control Automático (IFAC). La revista se desarrolla en el marco de la comunidad iberoamericana, y en general, en los entornos en los que el español constituye el idioma básico y no excluyente de comunicación. RIAI engloba las siguientes temáticas:
• Teoría de control y sistemas.
• Ingeniería de control de procesos e instrumentación.
• Técnicas de control avanzado.
• Automatización y control de sistemas de producción.
• Robótica y sistemas robotizados.
• Arquitecturas de control y tecnología de computadores aplicada al control automático de sistemas.
• Sistemas de tiempo real e informática industrial aplicados al control automático de sistemas.
• Filtrado, estimación y análisis y tratamiento de señales e imágenes aplicados al control automático de sistemas.
• Visión por computador aplicada al control automático de sistemas.
• Modelado, identificación, simulación y optimización de sistemas.
• Inteligencia computacional y técnicas de supervisión y detección de fallos aplicados al control automático de sistemas.
• Historia de la automática. La automática en sistemas sociales, económicos y empresariales.
• Cuestiones docentes y de formación en automática.
• Control de sistemas en red y complejos a gran escala.
• Control automático de procesos industriales, sistemas energéticos, mineros, ingeniería civil y edificios.
• Control automático de sistemas de transporte y vehículos.
• Control automático en bioingeniería, biología, agricultura, ecología y medicina.
• Control automático de máquinas y motores y mecatrónica.