帕斯卡三角形中数字分布的高斯近似

IF 0.1
Technical University, Kherson State, академия, Украина
{"title":"帕斯卡三角形中数字分布的高斯近似","authors":"Technical University, Kherson State, академия, Украина","doi":"10.17721/2706-9699.2021.1.01","DOIUrl":null,"url":null,"abstract":"We received normal distribution parameters that approximates the distribution of numbers in the n-th row of Pascal's triangle. We calculated the values for normalized moments of even orders and shown their asymptotic tendency towards values corresponding to a normal distribution. We have received highly accurate approximations for central elements of even rows of Pascal's triangle, which allows for calculation of binomial, as well as trinomial (or, in general cases, multinomial) coefficients. A hypothesis is proposed, according to which it is possible that physical and physics-chemical processes function according to Pascal's distribution, but due to how slight its deviation is from a normal distribution, it is difficult to notice. It is also possible that as technology and experimental methodology improves, this difference will become noticeable where it is traditionally considered that a normal distribution is taking place.","PeriodicalId":40347,"journal":{"name":"Journal of Numerical and Applied Mathematics","volume":"60 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GAUSS APPROXIMATION FOR NUMBER DISTRIBUTION IN OF A PASCAL’S TRIANGLE\",\"authors\":\"Technical University, Kherson State, академия, Украина\",\"doi\":\"10.17721/2706-9699.2021.1.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We received normal distribution parameters that approximates the distribution of numbers in the n-th row of Pascal's triangle. We calculated the values for normalized moments of even orders and shown their asymptotic tendency towards values corresponding to a normal distribution. We have received highly accurate approximations for central elements of even rows of Pascal's triangle, which allows for calculation of binomial, as well as trinomial (or, in general cases, multinomial) coefficients. A hypothesis is proposed, according to which it is possible that physical and physics-chemical processes function according to Pascal's distribution, but due to how slight its deviation is from a normal distribution, it is difficult to notice. It is also possible that as technology and experimental methodology improves, this difference will become noticeable where it is traditionally considered that a normal distribution is taking place.\",\"PeriodicalId\":40347,\"journal\":{\"name\":\"Journal of Numerical and Applied Mathematics\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Numerical and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17721/2706-9699.2021.1.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17721/2706-9699.2021.1.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们得到了近似帕斯卡三角形第n行数字分布的正态分布参数。我们计算了偶阶归一化矩的值,并证明了它们的渐近倾向于对应于正态分布的值。我们已经得到了帕斯卡三角形偶数行中心元素的高度精确的近似,它允许计算二项式,以及三项式(或者,在一般情况下,多项式)系数。提出了一个假设,根据这个假设,物理和物理化学过程可能按照帕斯卡分布运行,但由于它与正态分布的偏差很小,很难注意到。也有可能随着技术和实验方法的改进,这种差异将在传统上被认为是正态分布的地方变得明显。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GAUSS APPROXIMATION FOR NUMBER DISTRIBUTION IN OF A PASCAL’S TRIANGLE
We received normal distribution parameters that approximates the distribution of numbers in the n-th row of Pascal's triangle. We calculated the values for normalized moments of even orders and shown their asymptotic tendency towards values corresponding to a normal distribution. We have received highly accurate approximations for central elements of even rows of Pascal's triangle, which allows for calculation of binomial, as well as trinomial (or, in general cases, multinomial) coefficients. A hypothesis is proposed, according to which it is possible that physical and physics-chemical processes function according to Pascal's distribution, but due to how slight its deviation is from a normal distribution, it is difficult to notice. It is also possible that as technology and experimental methodology improves, this difference will become noticeable where it is traditionally considered that a normal distribution is taking place.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信