基于PAC学习的验证与模型综合

Yu-Fang Chen, Chiao-En Hsieh, Ondřej Lengál, Tsung-Ju Lii, M. Tsai, Bow-Yaw Wang, Farn Wang
{"title":"基于PAC学习的验证与模型综合","authors":"Yu-Fang Chen, Chiao-En Hsieh, Ondřej Lengál, Tsung-Ju Lii, M. Tsai, Bow-Yaw Wang, Farn Wang","doi":"10.1145/2884781.2884860","DOIUrl":null,"url":null,"abstract":"We introduce a novel technique for verification and model synthesis of sequential programs. Our technique is based on learning an approximate regular model of the set of feasible paths in a program, and testing whether this model contains an incorrect behavior. Exact learning algorithms require checking equivalence between the model and the program, which is a difficult problem, in general undecidable. Our learning procedure is therefore based on the framework of probably approximately correct (PAC) learning, which uses sampling instead, and provides correctness guarantees expressed using the terms error probability and confidence. Besides the verification result, our procedure also outputs the model with the said correctness guarantees. Obtained preliminary experiments show encouraging results, in some cases even outperforming mature software verifiers.","PeriodicalId":6485,"journal":{"name":"2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE)","volume":"71 1","pages":"714-724"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"PAC Learning-Based Verification and Model Synthesis\",\"authors\":\"Yu-Fang Chen, Chiao-En Hsieh, Ondřej Lengál, Tsung-Ju Lii, M. Tsai, Bow-Yaw Wang, Farn Wang\",\"doi\":\"10.1145/2884781.2884860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a novel technique for verification and model synthesis of sequential programs. Our technique is based on learning an approximate regular model of the set of feasible paths in a program, and testing whether this model contains an incorrect behavior. Exact learning algorithms require checking equivalence between the model and the program, which is a difficult problem, in general undecidable. Our learning procedure is therefore based on the framework of probably approximately correct (PAC) learning, which uses sampling instead, and provides correctness guarantees expressed using the terms error probability and confidence. Besides the verification result, our procedure also outputs the model with the said correctness guarantees. Obtained preliminary experiments show encouraging results, in some cases even outperforming mature software verifiers.\",\"PeriodicalId\":6485,\"journal\":{\"name\":\"2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE)\",\"volume\":\"71 1\",\"pages\":\"714-724\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2884781.2884860\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2884781.2884860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

介绍了一种新的序列程序验证和模型综合技术。我们的技术是基于学习程序中可行路径集的近似规则模型,并测试该模型是否包含不正确的行为。精确的学习算法需要检查模型和程序之间的等价性,这是一个难题,通常是不确定的。因此,我们的学习过程基于可能近似正确(PAC)学习框架,它使用采样代替,并提供使用术语错误概率和置信度表示的正确性保证。除了验证结果之外,我们的过程还输出具有上述正确性保证的模型。获得的初步实验显示了令人鼓舞的结果,在某些情况下甚至优于成熟的软件验证器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PAC Learning-Based Verification and Model Synthesis
We introduce a novel technique for verification and model synthesis of sequential programs. Our technique is based on learning an approximate regular model of the set of feasible paths in a program, and testing whether this model contains an incorrect behavior. Exact learning algorithms require checking equivalence between the model and the program, which is a difficult problem, in general undecidable. Our learning procedure is therefore based on the framework of probably approximately correct (PAC) learning, which uses sampling instead, and provides correctness guarantees expressed using the terms error probability and confidence. Besides the verification result, our procedure also outputs the model with the said correctness guarantees. Obtained preliminary experiments show encouraging results, in some cases even outperforming mature software verifiers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信