A. Morozov, I. Fomin, V. Gladyshev, V. Kauts, E. Sharandin, A. Kayutenko
{"title":"利用驻波系统产生引力波的方法","authors":"A. Morozov, I. Fomin, V. Gladyshev, V. Kauts, E. Sharandin, A. Kayutenko","doi":"10.18698/1812-3368-2022-6-90-105","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the method of generating gravitational waves by means of a system of standing electromagnetic waves at the difference frequency in electromagnetic resonators and their further registration based on various types of detectors. As a factor of amplification of the amplitude of gravitational waves induced by the proposed method, the inverse dependence of their amplitude on the square of the difference frequency is considered, which is a consequence of Einstein’s equations for the studied configuration of electromagnetic fields in the resonator. The characteristics of gravitational waves associated with the electromagnetic field inside the resonator and gravitational waves in empty space are compared. The possibility of conducting an experiment on the generation and detection of gravitational waves with controlled parameters of the source and detector (Hertz experiment) on the basis of the proposed method has been investigated. Various types of existing and promising detectors of low-frequency gravitational waves are considered and an estimate of the source characteristics necessary for the successful detection of gravitational waves generated by this method is obtained. The effectiveness of the proposed approach is compared with other methods of generating gravitational waves. The specificity of the considered method of generating gravitational waves is noted, associated with the possibility of obtaining in laboratory conditions low-frequency gravitational waves with a frequency close to the frequency of gravitational waves of astrophysical sources and the amplitude significantly exceeding the amplitude of high-frequency gravitational waves, which can be generated on the basis of previously proposed methods","PeriodicalId":12961,"journal":{"name":"Herald of the Bauman Moscow State Technical University. Series Natural Sciences","volume":"282 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Method for Generating Gravitational Waves by Meansof a Standing Electromagnetic Wave System\",\"authors\":\"A. Morozov, I. Fomin, V. Gladyshev, V. Kauts, E. Sharandin, A. Kayutenko\",\"doi\":\"10.18698/1812-3368-2022-6-90-105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the method of generating gravitational waves by means of a system of standing electromagnetic waves at the difference frequency in electromagnetic resonators and their further registration based on various types of detectors. As a factor of amplification of the amplitude of gravitational waves induced by the proposed method, the inverse dependence of their amplitude on the square of the difference frequency is considered, which is a consequence of Einstein’s equations for the studied configuration of electromagnetic fields in the resonator. The characteristics of gravitational waves associated with the electromagnetic field inside the resonator and gravitational waves in empty space are compared. The possibility of conducting an experiment on the generation and detection of gravitational waves with controlled parameters of the source and detector (Hertz experiment) on the basis of the proposed method has been investigated. Various types of existing and promising detectors of low-frequency gravitational waves are considered and an estimate of the source characteristics necessary for the successful detection of gravitational waves generated by this method is obtained. The effectiveness of the proposed approach is compared with other methods of generating gravitational waves. The specificity of the considered method of generating gravitational waves is noted, associated with the possibility of obtaining in laboratory conditions low-frequency gravitational waves with a frequency close to the frequency of gravitational waves of astrophysical sources and the amplitude significantly exceeding the amplitude of high-frequency gravitational waves, which can be generated on the basis of previously proposed methods\",\"PeriodicalId\":12961,\"journal\":{\"name\":\"Herald of the Bauman Moscow State Technical University. Series Natural Sciences\",\"volume\":\"282 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Herald of the Bauman Moscow State Technical University. Series Natural Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18698/1812-3368-2022-6-90-105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Herald of the Bauman Moscow State Technical University. Series Natural Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18698/1812-3368-2022-6-90-105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Method for Generating Gravitational Waves by Meansof a Standing Electromagnetic Wave System
In this paper, we consider the method of generating gravitational waves by means of a system of standing electromagnetic waves at the difference frequency in electromagnetic resonators and their further registration based on various types of detectors. As a factor of amplification of the amplitude of gravitational waves induced by the proposed method, the inverse dependence of their amplitude on the square of the difference frequency is considered, which is a consequence of Einstein’s equations for the studied configuration of electromagnetic fields in the resonator. The characteristics of gravitational waves associated with the electromagnetic field inside the resonator and gravitational waves in empty space are compared. The possibility of conducting an experiment on the generation and detection of gravitational waves with controlled parameters of the source and detector (Hertz experiment) on the basis of the proposed method has been investigated. Various types of existing and promising detectors of low-frequency gravitational waves are considered and an estimate of the source characteristics necessary for the successful detection of gravitational waves generated by this method is obtained. The effectiveness of the proposed approach is compared with other methods of generating gravitational waves. The specificity of the considered method of generating gravitational waves is noted, associated with the possibility of obtaining in laboratory conditions low-frequency gravitational waves with a frequency close to the frequency of gravitational waves of astrophysical sources and the amplitude significantly exceeding the amplitude of high-frequency gravitational waves, which can be generated on the basis of previously proposed methods
期刊介绍:
The journal is aimed at publishing most significant results of fundamental and applied studies and developments performed at research and industrial institutions in the following trends (ASJC code): 2600 Mathematics 2200 Engineering 3100 Physics and Astronomy 1600 Chemistry 1700 Computer Science.