{"title":"高空间维正双稳非线性扩散方程的自由边界问题I:渐近行为的分类","authors":"Y. Kaneko, Hiroshi Matsuzawa, Yoshio Yamada","doi":"10.3934/dcds.2021209","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>We study a free boundary problem of a reaction-diffusion equation <inline-formula><tex-math id=\"M1\">\\begin{document}$ u_t = \\Delta u+f(u) $\\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id=\"M2\">\\begin{document}$ t>0,\\ |x|<h(t) $\\end{document}</tex-math></inline-formula> under a radially symmetric environment in <inline-formula><tex-math id=\"M3\">\\begin{document}$ \\mathbb{R}^N $\\end{document}</tex-math></inline-formula>. The reaction term <inline-formula><tex-math id=\"M4\">\\begin{document}$ f $\\end{document}</tex-math></inline-formula> has positive bistable nonlinearity, which satisfies <inline-formula><tex-math id=\"M5\">\\begin{document}$ f(0) = 0 $\\end{document}</tex-math></inline-formula> and allows two positive stable equilibrium states and a positive unstable equilibrium state. The problem models the spread of a biological species, where the free boundary represents the spreading front and is governed by a one-phase Stefan condition. We show multiple spreading phenomena in high space dimensions. More precisely the asymptotic behaviors of solutions are classified into four cases: big spreading, small spreading, transition and vanishing, and sufficient conditions for each dynamical behavior are also given. We determine the spreading speed of the spherical surface <inline-formula><tex-math id=\"M6\">\\begin{document}$ \\{x\\in \\mathbb{R}^N:\\ |x| = h(t)\\} $\\end{document}</tex-math></inline-formula>, which expands to infinity as <inline-formula><tex-math id=\"M7\">\\begin{document}$ t\\to\\infty $\\end{document}</tex-math></inline-formula>, even when the corresponding semi-wave problem does not admit solutions.</p>","PeriodicalId":11254,"journal":{"name":"Discrete & Continuous Dynamical Systems - S","volume":"29 3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A free boundary problem of nonlinear diffusion equation with positive bistable nonlinearity in high space dimensions I : Classification of asymptotic behavior\",\"authors\":\"Y. Kaneko, Hiroshi Matsuzawa, Yoshio Yamada\",\"doi\":\"10.3934/dcds.2021209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>We study a free boundary problem of a reaction-diffusion equation <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ u_t = \\\\Delta u+f(u) $\\\\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ t>0,\\\\ |x|<h(t) $\\\\end{document}</tex-math></inline-formula> under a radially symmetric environment in <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ \\\\mathbb{R}^N $\\\\end{document}</tex-math></inline-formula>. The reaction term <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ f $\\\\end{document}</tex-math></inline-formula> has positive bistable nonlinearity, which satisfies <inline-formula><tex-math id=\\\"M5\\\">\\\\begin{document}$ f(0) = 0 $\\\\end{document}</tex-math></inline-formula> and allows two positive stable equilibrium states and a positive unstable equilibrium state. The problem models the spread of a biological species, where the free boundary represents the spreading front and is governed by a one-phase Stefan condition. We show multiple spreading phenomena in high space dimensions. More precisely the asymptotic behaviors of solutions are classified into four cases: big spreading, small spreading, transition and vanishing, and sufficient conditions for each dynamical behavior are also given. We determine the spreading speed of the spherical surface <inline-formula><tex-math id=\\\"M6\\\">\\\\begin{document}$ \\\\{x\\\\in \\\\mathbb{R}^N:\\\\ |x| = h(t)\\\\} $\\\\end{document}</tex-math></inline-formula>, which expands to infinity as <inline-formula><tex-math id=\\\"M7\\\">\\\\begin{document}$ t\\\\to\\\\infty $\\\\end{document}</tex-math></inline-formula>, even when the corresponding semi-wave problem does not admit solutions.</p>\",\"PeriodicalId\":11254,\"journal\":{\"name\":\"Discrete & Continuous Dynamical Systems - S\",\"volume\":\"29 3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete & Continuous Dynamical Systems - S\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/dcds.2021209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Continuous Dynamical Systems - S","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcds.2021209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A free boundary problem of nonlinear diffusion equation with positive bistable nonlinearity in high space dimensions I : Classification of asymptotic behavior
We study a free boundary problem of a reaction-diffusion equation \begin{document}$ u_t = \Delta u+f(u) $\end{document} for \begin{document}$ t>0,\ |x| under a radially symmetric environment in \begin{document}$ \mathbb{R}^N $\end{document}. The reaction term \begin{document}$ f $\end{document} has positive bistable nonlinearity, which satisfies \begin{document}$ f(0) = 0 $\end{document} and allows two positive stable equilibrium states and a positive unstable equilibrium state. The problem models the spread of a biological species, where the free boundary represents the spreading front and is governed by a one-phase Stefan condition. We show multiple spreading phenomena in high space dimensions. More precisely the asymptotic behaviors of solutions are classified into four cases: big spreading, small spreading, transition and vanishing, and sufficient conditions for each dynamical behavior are also given. We determine the spreading speed of the spherical surface \begin{document}$ \{x\in \mathbb{R}^N:\ |x| = h(t)\} $\end{document}, which expands to infinity as \begin{document}$ t\to\infty $\end{document}, even when the corresponding semi-wave problem does not admit solutions.