{"title":"值域中的高斯熵映射","authors":"Yassine El Maazouz","doi":"10.2140/astat.2022.13.1","DOIUrl":null,"url":null,"abstract":"We exhibit the analog of the entropy map for multivariate Gaussian distributions on local fields. As in the real case, the image of this map lies in the supermodular cone and it determines the distribution of the valuation vector. In general, this map can be defined for non-archimedian valued fields whose valuation group is an additive subgroup of the real line, and it remains supermodular. We also explicitly compute the image of this map in dimension 3.","PeriodicalId":41066,"journal":{"name":"Journal of Algebraic Statistics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The Gaussian entropy map in valued fields\",\"authors\":\"Yassine El Maazouz\",\"doi\":\"10.2140/astat.2022.13.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We exhibit the analog of the entropy map for multivariate Gaussian distributions on local fields. As in the real case, the image of this map lies in the supermodular cone and it determines the distribution of the valuation vector. In general, this map can be defined for non-archimedian valued fields whose valuation group is an additive subgroup of the real line, and it remains supermodular. We also explicitly compute the image of this map in dimension 3.\",\"PeriodicalId\":41066,\"journal\":{\"name\":\"Journal of Algebraic Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebraic Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/astat.2022.13.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/astat.2022.13.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We exhibit the analog of the entropy map for multivariate Gaussian distributions on local fields. As in the real case, the image of this map lies in the supermodular cone and it determines the distribution of the valuation vector. In general, this map can be defined for non-archimedian valued fields whose valuation group is an additive subgroup of the real line, and it remains supermodular. We also explicitly compute the image of this map in dimension 3.