{"title":"基于多面体的可配置计算数据重用优化","authors":"L. Pouchet, Peng Zhang, P. Sadayappan, J. Cong","doi":"10.1145/2435264.2435273","DOIUrl":null,"url":null,"abstract":"Many applications, such as medical imaging, generate intensive data traffic between the FPGA and off-chip memory. Significant improvements in the execution time can be achieved with effective utilization of on-chip (scratchpad) memories, associated with careful software-based data reuse and communication scheduling techniques. We present a fully automated C-to-FPGA framework to address this problem. Our framework effectively implements data reuse through aggressive loop transformation-based program restructuring. In addition, our proposed framework automatically implements critical optimizations for performance such as task-level parallelization, loop pipelining, and data prefetching.\n We leverage the power and expressiveness of the polyhedral compilation model to develop a multi-objective optimization system for off-chip communications management. Our technique can satisfy hardware resource constraints (scratchpad size) while still aggressively exploiting data reuse. Our approach can also be used to reduce the on-chip buffer size subject to bandwidth constraint. We also implement a fast design space exploration technique for effective optimization of program performance using the Xilinx high-level synthesis tool.","PeriodicalId":87257,"journal":{"name":"FPGA. ACM International Symposium on Field-Programmable Gate Arrays","volume":"15 1","pages":"29-38"},"PeriodicalIF":0.0000,"publicationDate":"2013-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"163","resultStr":"{\"title\":\"Polyhedral-based data reuse optimization for configurable computing\",\"authors\":\"L. Pouchet, Peng Zhang, P. Sadayappan, J. Cong\",\"doi\":\"10.1145/2435264.2435273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many applications, such as medical imaging, generate intensive data traffic between the FPGA and off-chip memory. Significant improvements in the execution time can be achieved with effective utilization of on-chip (scratchpad) memories, associated with careful software-based data reuse and communication scheduling techniques. We present a fully automated C-to-FPGA framework to address this problem. Our framework effectively implements data reuse through aggressive loop transformation-based program restructuring. In addition, our proposed framework automatically implements critical optimizations for performance such as task-level parallelization, loop pipelining, and data prefetching.\\n We leverage the power and expressiveness of the polyhedral compilation model to develop a multi-objective optimization system for off-chip communications management. Our technique can satisfy hardware resource constraints (scratchpad size) while still aggressively exploiting data reuse. Our approach can also be used to reduce the on-chip buffer size subject to bandwidth constraint. We also implement a fast design space exploration technique for effective optimization of program performance using the Xilinx high-level synthesis tool.\",\"PeriodicalId\":87257,\"journal\":{\"name\":\"FPGA. ACM International Symposium on Field-Programmable Gate Arrays\",\"volume\":\"15 1\",\"pages\":\"29-38\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"163\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FPGA. ACM International Symposium on Field-Programmable Gate Arrays\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2435264.2435273\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FPGA. ACM International Symposium on Field-Programmable Gate Arrays","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2435264.2435273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Polyhedral-based data reuse optimization for configurable computing
Many applications, such as medical imaging, generate intensive data traffic between the FPGA and off-chip memory. Significant improvements in the execution time can be achieved with effective utilization of on-chip (scratchpad) memories, associated with careful software-based data reuse and communication scheduling techniques. We present a fully automated C-to-FPGA framework to address this problem. Our framework effectively implements data reuse through aggressive loop transformation-based program restructuring. In addition, our proposed framework automatically implements critical optimizations for performance such as task-level parallelization, loop pipelining, and data prefetching.
We leverage the power and expressiveness of the polyhedral compilation model to develop a multi-objective optimization system for off-chip communications management. Our technique can satisfy hardware resource constraints (scratchpad size) while still aggressively exploiting data reuse. Our approach can also be used to reduce the on-chip buffer size subject to bandwidth constraint. We also implement a fast design space exploration technique for effective optimization of program performance using the Xilinx high-level synthesis tool.