多项式跳转算子

Q4 Mathematics
Mike Townsend
{"title":"多项式跳转算子","authors":"Mike Townsend","doi":"10.1016/S0019-9958(86)80032-8","DOIUrl":null,"url":null,"abstract":"<div><p>For recursive sets <em>A</em>, define a complexity theoretic version of the ordinary recursion theoretic jump by setting <em>A′</em> equal to the canonical <em>NP<sup>A</sup></em>-complete set. Thus <em>A</em> &lt; <em><sup>P</sup><sub>T</sub> A′</em> iff <em>P<sup>A</sup></em> ≠ <em>NP<sup>A</sup></em>. The <em>n</em>th jump, <em>A</em><sup>(<em>n</em>)</sup>, is defined by iteration. A jumps <em>n</em> times if <em>A</em> &lt; <em><sup>P</sup><sub>T</sub> A′</em> &lt; <em><sup>P</sup><sub>T</sub></em>… &lt; <em><sup>P</sup><sub>T</sub> A</em><sup>(<em>n</em>)</sup>. It is straightforward that the jump operation is monotone. Post's theorem holds for the (relativized) polynomial hierarchy. We establish the following analogues of results in ordinary recursion theory: all relationships between pairs of polynomial Turing degrees and their jumps consistent with monotonicity can be realized by degrees which jump at least twice. For example, there are polynomially incomparable <em>A</em> and <em>B</em> with <em>A′</em> ≡ <em><sup>P</sup><sub>T</sub> B′</em>. Moreover, if for each recursive <em>D</em> the set of <em>E</em> such that <em>D</em> join <em>E</em> jumps at least <em>n</em> times is effectively comeager, then these relationships can be realized by degrees jumping at least <em>n</em> times. We also relativize some well-known results by showing that if <em>A′</em> is polynomially many-one reducible to the join of <em>A</em> and a (co-)sparse set, then <em>P<sup>A</sup></em> = <em>NP<sup>A</sup></em>; and if <em>A′</em> is polynomially Turing reducible to the join of <em>A</em> and an <em>NP<sup>A</sup></em>-(co-)sparse set, then the relativized polynomial hierarchy collapses to <em>Δ<sup>P,A</sup></em><sub>2</sub>.</p></div>","PeriodicalId":38164,"journal":{"name":"信息与控制","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1986-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0019-9958(86)80032-8","citationCount":"1","resultStr":"{\"title\":\"A polynomial jump operator\",\"authors\":\"Mike Townsend\",\"doi\":\"10.1016/S0019-9958(86)80032-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For recursive sets <em>A</em>, define a complexity theoretic version of the ordinary recursion theoretic jump by setting <em>A′</em> equal to the canonical <em>NP<sup>A</sup></em>-complete set. Thus <em>A</em> &lt; <em><sup>P</sup><sub>T</sub> A′</em> iff <em>P<sup>A</sup></em> ≠ <em>NP<sup>A</sup></em>. The <em>n</em>th jump, <em>A</em><sup>(<em>n</em>)</sup>, is defined by iteration. A jumps <em>n</em> times if <em>A</em> &lt; <em><sup>P</sup><sub>T</sub> A′</em> &lt; <em><sup>P</sup><sub>T</sub></em>… &lt; <em><sup>P</sup><sub>T</sub> A</em><sup>(<em>n</em>)</sup>. It is straightforward that the jump operation is monotone. Post's theorem holds for the (relativized) polynomial hierarchy. We establish the following analogues of results in ordinary recursion theory: all relationships between pairs of polynomial Turing degrees and their jumps consistent with monotonicity can be realized by degrees which jump at least twice. For example, there are polynomially incomparable <em>A</em> and <em>B</em> with <em>A′</em> ≡ <em><sup>P</sup><sub>T</sub> B′</em>. Moreover, if for each recursive <em>D</em> the set of <em>E</em> such that <em>D</em> join <em>E</em> jumps at least <em>n</em> times is effectively comeager, then these relationships can be realized by degrees jumping at least <em>n</em> times. We also relativize some well-known results by showing that if <em>A′</em> is polynomially many-one reducible to the join of <em>A</em> and a (co-)sparse set, then <em>P<sup>A</sup></em> = <em>NP<sup>A</sup></em>; and if <em>A′</em> is polynomially Turing reducible to the join of <em>A</em> and an <em>NP<sup>A</sup></em>-(co-)sparse set, then the relativized polynomial hierarchy collapses to <em>Δ<sup>P,A</sup></em><sub>2</sub>.</p></div>\",\"PeriodicalId\":38164,\"journal\":{\"name\":\"信息与控制\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1986-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0019-9958(86)80032-8\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"信息与控制\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019995886800328\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"信息与控制","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019995886800328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

对于递归集A,通过设A '等于正则npa完全集来定义普通递归跳变的复杂度理论版本。因此A <如果PA≠NPA。第n次跳转A(n)由迭代定义。A跳n次,如果A <p ' t;PT…& lt;PT (n)。很明显,跳转操作是单调的。波斯特定理适用于(相对化的)多项式层次结构。我们建立了普通递归理论中类似的结果:多项式图灵度对与符合单调性的跳变之间的所有关系都可以通过跳变至少两次的度来实现。例如,存在多项式不可比较的A和B,且A′≡PT B′。此外,如果对于每个递归D,使得D与E至少跳跃n次的E的集合是有效可合的,那么这些关系可以通过至少跳n次的度来实现。我们还通过证明如果A '是多项式多一可约为A与一个(共)稀疏集的连接,将一些著名的结果相对化,则PA = NPA;如果A '是多项式图灵可约为A与NPA-(共)稀疏集的连接,则相对化多项式层次结构崩溃为ΔP,A2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A polynomial jump operator

For recursive sets A, define a complexity theoretic version of the ordinary recursion theoretic jump by setting A′ equal to the canonical NPA-complete set. Thus A < PT A′ iff PANPA. The nth jump, A(n), is defined by iteration. A jumps n times if A < PT A′ < PT… < PT A(n). It is straightforward that the jump operation is monotone. Post's theorem holds for the (relativized) polynomial hierarchy. We establish the following analogues of results in ordinary recursion theory: all relationships between pairs of polynomial Turing degrees and their jumps consistent with monotonicity can be realized by degrees which jump at least twice. For example, there are polynomially incomparable A and B with A′PT B′. Moreover, if for each recursive D the set of E such that D join E jumps at least n times is effectively comeager, then these relationships can be realized by degrees jumping at least n times. We also relativize some well-known results by showing that if A′ is polynomially many-one reducible to the join of A and a (co-)sparse set, then PA = NPA; and if A′ is polynomially Turing reducible to the join of A and an NPA-(co-)sparse set, then the relativized polynomial hierarchy collapses to ΔP,A2.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
信息与控制
信息与控制 Mathematics-Control and Optimization
CiteScore
1.50
自引率
0.00%
发文量
4623
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信