{"title":"验证机器学习岭回归模型使用蒙特卡罗,bootstrap和交叉验证的变化","authors":"Robbie T. Nakatsu","doi":"10.1515/jisys-2022-0224","DOIUrl":null,"url":null,"abstract":"Abstract In recent years, there have been several calls by practitioners of machine learning to provide more guidelines on how to use its methods and techniques. For example, the current literature on resampling methods is confusing and sometimes contradictory; worse, there are sometimes no practical guidelines offered at all. To address this shortcoming, a simulation study was conducted that evaluated ridge regression models fitted on five real-world datasets. The study compared the performance of four resampling methods, namely, Monte Carlo resampling, bootstrap, k-fold cross-validation, and repeated k-fold cross-validation. The goal was to find the best-fitting λ (regularization) parameter that would minimize mean squared error, by using nine variations of these resampling methods. For each of the nine resampling variations, 1,000 runs were performed to see how often a good fit, average fit, and poor fit λ value would be chosen. The resampling method that chose good fit values the greatest number of times was deemed the best method. Based on the results of the investigation, three general recommendations are made: (1) repeated k-fold cross-validation is the best method to select as a general-purpose resampling method; (2) k = 10 folds is a good choice in k-fold cross-validation; (3) Monte Carlo and bootstrap are underperformers, so they are not recommended as general-purpose resampling methods. At the same time, no resampling method was found to be uniformly better than the others.","PeriodicalId":46139,"journal":{"name":"Journal of Intelligent Systems","volume":"6 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Validation of machine learning ridge regression models using Monte Carlo, bootstrap, and variations in cross-validation\",\"authors\":\"Robbie T. Nakatsu\",\"doi\":\"10.1515/jisys-2022-0224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In recent years, there have been several calls by practitioners of machine learning to provide more guidelines on how to use its methods and techniques. For example, the current literature on resampling methods is confusing and sometimes contradictory; worse, there are sometimes no practical guidelines offered at all. To address this shortcoming, a simulation study was conducted that evaluated ridge regression models fitted on five real-world datasets. The study compared the performance of four resampling methods, namely, Monte Carlo resampling, bootstrap, k-fold cross-validation, and repeated k-fold cross-validation. The goal was to find the best-fitting λ (regularization) parameter that would minimize mean squared error, by using nine variations of these resampling methods. For each of the nine resampling variations, 1,000 runs were performed to see how often a good fit, average fit, and poor fit λ value would be chosen. The resampling method that chose good fit values the greatest number of times was deemed the best method. Based on the results of the investigation, three general recommendations are made: (1) repeated k-fold cross-validation is the best method to select as a general-purpose resampling method; (2) k = 10 folds is a good choice in k-fold cross-validation; (3) Monte Carlo and bootstrap are underperformers, so they are not recommended as general-purpose resampling methods. At the same time, no resampling method was found to be uniformly better than the others.\",\"PeriodicalId\":46139,\"journal\":{\"name\":\"Journal of Intelligent Systems\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jisys-2022-0224\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jisys-2022-0224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Validation of machine learning ridge regression models using Monte Carlo, bootstrap, and variations in cross-validation
Abstract In recent years, there have been several calls by practitioners of machine learning to provide more guidelines on how to use its methods and techniques. For example, the current literature on resampling methods is confusing and sometimes contradictory; worse, there are sometimes no practical guidelines offered at all. To address this shortcoming, a simulation study was conducted that evaluated ridge regression models fitted on five real-world datasets. The study compared the performance of four resampling methods, namely, Monte Carlo resampling, bootstrap, k-fold cross-validation, and repeated k-fold cross-validation. The goal was to find the best-fitting λ (regularization) parameter that would minimize mean squared error, by using nine variations of these resampling methods. For each of the nine resampling variations, 1,000 runs were performed to see how often a good fit, average fit, and poor fit λ value would be chosen. The resampling method that chose good fit values the greatest number of times was deemed the best method. Based on the results of the investigation, three general recommendations are made: (1) repeated k-fold cross-validation is the best method to select as a general-purpose resampling method; (2) k = 10 folds is a good choice in k-fold cross-validation; (3) Monte Carlo and bootstrap are underperformers, so they are not recommended as general-purpose resampling methods. At the same time, no resampling method was found to be uniformly better than the others.
期刊介绍:
The Journal of Intelligent Systems aims to provide research and review papers, as well as Brief Communications at an interdisciplinary level, with the field of intelligent systems providing the focal point. This field includes areas like artificial intelligence, models and computational theories of human cognition, perception and motivation; brain models, artificial neural nets and neural computing. It covers contributions from the social, human and computer sciences to the analysis and application of information technology.