无自旋结构的紧致双曲流形

IF 2 1区 数学
B. Martelli, Stefano Riolo, Leone Slavich
{"title":"无自旋结构的紧致双曲流形","authors":"B. Martelli, Stefano Riolo, Leone Slavich","doi":"10.2140/gt.2020.24.2647","DOIUrl":null,"url":null,"abstract":"We exhibit the first examples of compact orientable hyperbolic manifolds that do not have any spin structure. We show that such manifolds exist in all dimensions $n \\geq 4$. The core of the argument is the construction of a compact orientable hyperbolic $4$-manifold $M$ that contains a surface $S$ of genus $3$ with self intersection $1$. The $4$-manifold $M$ has an odd intersection form and is hence not spin. It is built by carefully assembling some right angled $120$-cells along a pattern inspired by the minimum trisection of $\\mathbb{C}\\mathbb{P}^2$. The manifold $M$ is also the first example of a compact orientable hyperbolic $4$-manifold satisfying any of these conditions: 1) $H_2(M,\\mathbb{Z})$ is not generated by geodesically immersed surfaces. 2) There is a covering $\\tilde{M}$ that is a non-trivial bundle over a compact surface.","PeriodicalId":55105,"journal":{"name":"Geometry & Topology","volume":"21 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2019-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Compact hyperbolic manifolds without spin structures\",\"authors\":\"B. Martelli, Stefano Riolo, Leone Slavich\",\"doi\":\"10.2140/gt.2020.24.2647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We exhibit the first examples of compact orientable hyperbolic manifolds that do not have any spin structure. We show that such manifolds exist in all dimensions $n \\\\geq 4$. The core of the argument is the construction of a compact orientable hyperbolic $4$-manifold $M$ that contains a surface $S$ of genus $3$ with self intersection $1$. The $4$-manifold $M$ has an odd intersection form and is hence not spin. It is built by carefully assembling some right angled $120$-cells along a pattern inspired by the minimum trisection of $\\\\mathbb{C}\\\\mathbb{P}^2$. The manifold $M$ is also the first example of a compact orientable hyperbolic $4$-manifold satisfying any of these conditions: 1) $H_2(M,\\\\mathbb{Z})$ is not generated by geodesically immersed surfaces. 2) There is a covering $\\\\tilde{M}$ that is a non-trivial bundle over a compact surface.\",\"PeriodicalId\":55105,\"journal\":{\"name\":\"Geometry & Topology\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2019-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry & Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/gt.2020.24.2647\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2020.24.2647","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

我们展示了没有任何自旋结构的紧致可定向双曲流形的第一个例子。我们证明这样的流形存在于所有维度$n \geq 4$。论证的核心是构造一个紧致可定向的双曲$4$ -流形$M$,它包含一个具有自交$1$的属$3$曲面$S$。$4$ -流形$M$具有奇交形式,因此不自旋。它是通过小心地组装一些直角$120$ -细胞沿着一个图案的灵感来自$\mathbb{C}\mathbb{P}^2$的最小三切面。流形$M$也是紧致可定向双曲$4$流形的第一个例子,它满足以下任何条件:1)$H_2(M,\mathbb{Z})$不是由测地浸没表面生成的。2)有一个覆盖物$\tilde{M}$,它是紧曲面上的一个非平凡束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compact hyperbolic manifolds without spin structures
We exhibit the first examples of compact orientable hyperbolic manifolds that do not have any spin structure. We show that such manifolds exist in all dimensions $n \geq 4$. The core of the argument is the construction of a compact orientable hyperbolic $4$-manifold $M$ that contains a surface $S$ of genus $3$ with self intersection $1$. The $4$-manifold $M$ has an odd intersection form and is hence not spin. It is built by carefully assembling some right angled $120$-cells along a pattern inspired by the minimum trisection of $\mathbb{C}\mathbb{P}^2$. The manifold $M$ is also the first example of a compact orientable hyperbolic $4$-manifold satisfying any of these conditions: 1) $H_2(M,\mathbb{Z})$ is not generated by geodesically immersed surfaces. 2) There is a covering $\tilde{M}$ that is a non-trivial bundle over a compact surface.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geometry & Topology
Geometry & Topology 数学-数学
自引率
5.00%
发文量
34
期刊介绍: Geometry and Topology is a fully refereed journal covering all of geometry and topology, broadly understood. G&T is published in electronic and print formats by Mathematical Sciences Publishers. The purpose of Geometry & Topology is the advancement of mathematics. Editors evaluate submitted papers strictly on the basis of scientific merit, without regard to authors" nationality, country of residence, institutional affiliation, sex, ethnic origin, or political views.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信