{"title":"无自旋结构的紧致双曲流形","authors":"B. Martelli, Stefano Riolo, Leone Slavich","doi":"10.2140/gt.2020.24.2647","DOIUrl":null,"url":null,"abstract":"We exhibit the first examples of compact orientable hyperbolic manifolds that do not have any spin structure. We show that such manifolds exist in all dimensions $n \\geq 4$. The core of the argument is the construction of a compact orientable hyperbolic $4$-manifold $M$ that contains a surface $S$ of genus $3$ with self intersection $1$. The $4$-manifold $M$ has an odd intersection form and is hence not spin. It is built by carefully assembling some right angled $120$-cells along a pattern inspired by the minimum trisection of $\\mathbb{C}\\mathbb{P}^2$. The manifold $M$ is also the first example of a compact orientable hyperbolic $4$-manifold satisfying any of these conditions: 1) $H_2(M,\\mathbb{Z})$ is not generated by geodesically immersed surfaces. 2) There is a covering $\\tilde{M}$ that is a non-trivial bundle over a compact surface.","PeriodicalId":55105,"journal":{"name":"Geometry & Topology","volume":"21 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2019-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Compact hyperbolic manifolds without spin structures\",\"authors\":\"B. Martelli, Stefano Riolo, Leone Slavich\",\"doi\":\"10.2140/gt.2020.24.2647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We exhibit the first examples of compact orientable hyperbolic manifolds that do not have any spin structure. We show that such manifolds exist in all dimensions $n \\\\geq 4$. The core of the argument is the construction of a compact orientable hyperbolic $4$-manifold $M$ that contains a surface $S$ of genus $3$ with self intersection $1$. The $4$-manifold $M$ has an odd intersection form and is hence not spin. It is built by carefully assembling some right angled $120$-cells along a pattern inspired by the minimum trisection of $\\\\mathbb{C}\\\\mathbb{P}^2$. The manifold $M$ is also the first example of a compact orientable hyperbolic $4$-manifold satisfying any of these conditions: 1) $H_2(M,\\\\mathbb{Z})$ is not generated by geodesically immersed surfaces. 2) There is a covering $\\\\tilde{M}$ that is a non-trivial bundle over a compact surface.\",\"PeriodicalId\":55105,\"journal\":{\"name\":\"Geometry & Topology\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2019-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry & Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/gt.2020.24.2647\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2020.24.2647","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Compact hyperbolic manifolds without spin structures
We exhibit the first examples of compact orientable hyperbolic manifolds that do not have any spin structure. We show that such manifolds exist in all dimensions $n \geq 4$. The core of the argument is the construction of a compact orientable hyperbolic $4$-manifold $M$ that contains a surface $S$ of genus $3$ with self intersection $1$. The $4$-manifold $M$ has an odd intersection form and is hence not spin. It is built by carefully assembling some right angled $120$-cells along a pattern inspired by the minimum trisection of $\mathbb{C}\mathbb{P}^2$. The manifold $M$ is also the first example of a compact orientable hyperbolic $4$-manifold satisfying any of these conditions: 1) $H_2(M,\mathbb{Z})$ is not generated by geodesically immersed surfaces. 2) There is a covering $\tilde{M}$ that is a non-trivial bundle over a compact surface.
期刊介绍:
Geometry and Topology is a fully refereed journal covering all of geometry and topology, broadly understood. G&T is published in electronic and print formats by Mathematical Sciences Publishers.
The purpose of Geometry & Topology is the advancement of mathematics. Editors evaluate submitted papers strictly on the basis of scientific merit, without regard to authors" nationality, country of residence, institutional affiliation, sex, ethnic origin, or political views.