基于事件的Twitter数据情感分析

Mamta Patil, H. K. Chavan
{"title":"基于事件的Twitter数据情感分析","authors":"Mamta Patil, H. K. Chavan","doi":"10.1109/ICCMC.2018.8487531","DOIUrl":null,"url":null,"abstract":"Everyday large volumes of data are produced. Millions of users share and dissipate most up-to-date information on twitter. Traditional text mining suffers severely from short and noisy nature of tweets. Event detection from twitter data has many new challenges when compared to event detection from traditional media. Noisy nature and limited length are the challenges imposed by twitter data. Event detection performance on twitter is negatively affected by nature of tweets. This paper proposes SegAnalysis framework to tackle these challenges. It performs tweet segmentation, event detection and sentiment analysis. Tweet segmentation is performed in a batch mode using POS (part of speech) tagger on recent online tweets fetched by the user. Segmentation of a tweet preserves the named entities and its stickiness score is calculated. Naïve Bayes classification and online clustering detect events. These events improve situational awareness and decision support. Sentiment analysis categorizes tweets as positive, negative and neutral depending on sentiment score of a tweet. SegAnalysis framework can be extended to deal with events belonging to multiple clusters.","PeriodicalId":6604,"journal":{"name":"2018 Second International Conference on Computing Methodologies and Communication (ICCMC)","volume":"31 1","pages":"1050-1054"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Event Based Sentiment Analysis of Twitter Data\",\"authors\":\"Mamta Patil, H. K. Chavan\",\"doi\":\"10.1109/ICCMC.2018.8487531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Everyday large volumes of data are produced. Millions of users share and dissipate most up-to-date information on twitter. Traditional text mining suffers severely from short and noisy nature of tweets. Event detection from twitter data has many new challenges when compared to event detection from traditional media. Noisy nature and limited length are the challenges imposed by twitter data. Event detection performance on twitter is negatively affected by nature of tweets. This paper proposes SegAnalysis framework to tackle these challenges. It performs tweet segmentation, event detection and sentiment analysis. Tweet segmentation is performed in a batch mode using POS (part of speech) tagger on recent online tweets fetched by the user. Segmentation of a tweet preserves the named entities and its stickiness score is calculated. Naïve Bayes classification and online clustering detect events. These events improve situational awareness and decision support. Sentiment analysis categorizes tweets as positive, negative and neutral depending on sentiment score of a tweet. SegAnalysis framework can be extended to deal with events belonging to multiple clusters.\",\"PeriodicalId\":6604,\"journal\":{\"name\":\"2018 Second International Conference on Computing Methodologies and Communication (ICCMC)\",\"volume\":\"31 1\",\"pages\":\"1050-1054\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Second International Conference on Computing Methodologies and Communication (ICCMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCMC.2018.8487531\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Second International Conference on Computing Methodologies and Communication (ICCMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCMC.2018.8487531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

每天都会产生大量的数据。数以百万计的用户在twitter上分享和传播最新的信息。传统的文本挖掘受到tweet短而嘈杂的严重影响。与传统媒体的事件检测相比,twitter数据的事件检测面临着许多新的挑战。嘈杂的性质和有限的长度是推特数据带来的挑战。twitter上的事件检测性能受到tweet性质的负面影响。本文提出了SegAnalysis框架来解决这些挑战。它执行tweet分割、事件检测和情感分析。使用词性标注器对用户获取的最近在线推文进行批量分割。tweet的分割保留了命名实体并计算了其粘性分数。Naïve贝叶斯分类和在线聚类检测事件。这些事件提高了态势感知和决策支持。情绪分析根据tweet的情绪得分将tweet分类为积极,消极和中性。可以扩展SegAnalysis框架来处理属于多个集群的事件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Event Based Sentiment Analysis of Twitter Data
Everyday large volumes of data are produced. Millions of users share and dissipate most up-to-date information on twitter. Traditional text mining suffers severely from short and noisy nature of tweets. Event detection from twitter data has many new challenges when compared to event detection from traditional media. Noisy nature and limited length are the challenges imposed by twitter data. Event detection performance on twitter is negatively affected by nature of tweets. This paper proposes SegAnalysis framework to tackle these challenges. It performs tweet segmentation, event detection and sentiment analysis. Tweet segmentation is performed in a batch mode using POS (part of speech) tagger on recent online tweets fetched by the user. Segmentation of a tweet preserves the named entities and its stickiness score is calculated. Naïve Bayes classification and online clustering detect events. These events improve situational awareness and decision support. Sentiment analysis categorizes tweets as positive, negative and neutral depending on sentiment score of a tweet. SegAnalysis framework can be extended to deal with events belonging to multiple clusters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信