{"title":"均匀全秩约束下粒子系统的平均场极限","authors":"Steffen Plunder, B. Simeon","doi":"10.3934/krm.2023012","DOIUrl":null,"url":null,"abstract":"We consider a particle system with uniform coupling between a macroscopic component and individual particles. The constraint for each particle is of full rank, which implies that each movement of the macroscopic component leads to a movement of all particles and vice versa. Skeletal muscle tissues share a similar property which motivates this work. We prove convergence of the mean-field limit, well-posedness and a stability estimate for the mean-field PDE.","PeriodicalId":49942,"journal":{"name":"Kinetic and Related Models","volume":"4 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The mean-field limit for particle systems with uniform full-rank constraints\",\"authors\":\"Steffen Plunder, B. Simeon\",\"doi\":\"10.3934/krm.2023012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a particle system with uniform coupling between a macroscopic component and individual particles. The constraint for each particle is of full rank, which implies that each movement of the macroscopic component leads to a movement of all particles and vice versa. Skeletal muscle tissues share a similar property which motivates this work. We prove convergence of the mean-field limit, well-posedness and a stability estimate for the mean-field PDE.\",\"PeriodicalId\":49942,\"journal\":{\"name\":\"Kinetic and Related Models\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kinetic and Related Models\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/krm.2023012\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kinetic and Related Models","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/krm.2023012","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The mean-field limit for particle systems with uniform full-rank constraints
We consider a particle system with uniform coupling between a macroscopic component and individual particles. The constraint for each particle is of full rank, which implies that each movement of the macroscopic component leads to a movement of all particles and vice versa. Skeletal muscle tissues share a similar property which motivates this work. We prove convergence of the mean-field limit, well-posedness and a stability estimate for the mean-field PDE.
期刊介绍:
KRM publishes high quality papers of original research in the areas of kinetic equations spanning from mathematical theory to numerical analysis, simulations and modelling. It includes studies on models arising from physics, engineering, finance, biology, human and social sciences, together with their related fields such as fluid models, interacting particle systems and quantum systems. A more detailed indication of its scope is given by the subject interests of the members of the Board of Editors. Invited expository articles are also published from time to time.