提高迭代计算机断层图像重建算法的性能

Shimaa Abdulsalam Khazal, Mohammed H. Ali
{"title":"提高迭代计算机断层图像重建算法的性能","authors":"Shimaa Abdulsalam Khazal, Mohammed H. Ali","doi":"10.29194/njes.23020194","DOIUrl":null,"url":null,"abstract":"Computed tomography (CT) imaging is an important diagnostic tool. CT imaging facilitates the internal rendering of a scanned object by measuring the attenuation of beams of X-ray radiation. CT employs a mathematical technique of image reconstruction; those techniques are classified as; analytical and iterative. The iterative reconstruction (IR) methods have been proven to be superior over the analytical methods, but due to their prolonged reconstruction time, those methods are excluded from routine use in clinical applications. In this paper the reconstruction time of an IR algorithm is minimized through the employment of an adaptive region growing segmentation method that focuses the image reconstruction process on a specified region, thus ignoring unwanted pixels that increase the computation time. This method is tested on the iterative algebraic reconstruction technique (ART) algorithm. Some phantom images are used in this paper to demonstrate the effects of the segmentation process. The simulation results are executed using MATLAB (version R2018b) programming language, and a computer system with the following specifications: CPU core i7 (2.40 GHz) for processing. Simulation results indicate that this method will reduce the reconstruction time of the iterative algorithms, and will enhance the quality of the reconstructed image.","PeriodicalId":7470,"journal":{"name":"Al-Nahrain Journal for Engineering Sciences","volume":"1 1","pages":"194-203"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Increasing the Performance of the Iterative Computed Tomography Image Reconstruction Algorithms\",\"authors\":\"Shimaa Abdulsalam Khazal, Mohammed H. Ali\",\"doi\":\"10.29194/njes.23020194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computed tomography (CT) imaging is an important diagnostic tool. CT imaging facilitates the internal rendering of a scanned object by measuring the attenuation of beams of X-ray radiation. CT employs a mathematical technique of image reconstruction; those techniques are classified as; analytical and iterative. The iterative reconstruction (IR) methods have been proven to be superior over the analytical methods, but due to their prolonged reconstruction time, those methods are excluded from routine use in clinical applications. In this paper the reconstruction time of an IR algorithm is minimized through the employment of an adaptive region growing segmentation method that focuses the image reconstruction process on a specified region, thus ignoring unwanted pixels that increase the computation time. This method is tested on the iterative algebraic reconstruction technique (ART) algorithm. Some phantom images are used in this paper to demonstrate the effects of the segmentation process. The simulation results are executed using MATLAB (version R2018b) programming language, and a computer system with the following specifications: CPU core i7 (2.40 GHz) for processing. Simulation results indicate that this method will reduce the reconstruction time of the iterative algorithms, and will enhance the quality of the reconstructed image.\",\"PeriodicalId\":7470,\"journal\":{\"name\":\"Al-Nahrain Journal for Engineering Sciences\",\"volume\":\"1 1\",\"pages\":\"194-203\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Al-Nahrain Journal for Engineering Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29194/njes.23020194\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Al-Nahrain Journal for Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29194/njes.23020194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

计算机断层扫描(CT)成像是重要的诊断工具。CT成像通过测量x射线辐射束的衰减来促进被扫描物体的内部渲染。CT采用数学图像重建技术;这些技术被分类为;分析和迭代。迭代重建(IR)方法已被证明优于分析方法,但由于其重建时间较长,这些方法被排除在临床应用的常规应用之外。本文通过采用自适应区域增长分割方法,将图像重建过程集中在指定区域,从而忽略了增加计算时间的不需要的像素,从而最大限度地减少了红外算法的重建时间。在迭代代数重构技术(ART)算法上对该方法进行了测试。本文用一些幻像来演示分割过程的效果。仿真结果采用MATLAB (R2018b版本)编程语言执行,计算机系统规格如下:CPU内核i7 (2.40 GHz)进行处理。仿真结果表明,该方法减少了迭代算法的重构时间,提高了重构图像的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Increasing the Performance of the Iterative Computed Tomography Image Reconstruction Algorithms
Computed tomography (CT) imaging is an important diagnostic tool. CT imaging facilitates the internal rendering of a scanned object by measuring the attenuation of beams of X-ray radiation. CT employs a mathematical technique of image reconstruction; those techniques are classified as; analytical and iterative. The iterative reconstruction (IR) methods have been proven to be superior over the analytical methods, but due to their prolonged reconstruction time, those methods are excluded from routine use in clinical applications. In this paper the reconstruction time of an IR algorithm is minimized through the employment of an adaptive region growing segmentation method that focuses the image reconstruction process on a specified region, thus ignoring unwanted pixels that increase the computation time. This method is tested on the iterative algebraic reconstruction technique (ART) algorithm. Some phantom images are used in this paper to demonstrate the effects of the segmentation process. The simulation results are executed using MATLAB (version R2018b) programming language, and a computer system with the following specifications: CPU core i7 (2.40 GHz) for processing. Simulation results indicate that this method will reduce the reconstruction time of the iterative algorithms, and will enhance the quality of the reconstructed image.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信