从非常大的跟踪文件中计算系统参数统计信息的框架

Naser Ezzati-Jivan, M. Dagenais
{"title":"从非常大的跟踪文件中计算系统参数统计信息的框架","authors":"Naser Ezzati-Jivan, M. Dagenais","doi":"10.1145/2433140.2433151","DOIUrl":null,"url":null,"abstract":"In this paper, we present a framework to compute, store and retrieve statistics of various system metrics from large traces in an efficient way. The proposed framework allows for rapid interactive queries about system metrics values for any given time interval. In the proposed framework, efficient data structures and algorithms are designed to achieve a reasonable query time while utilizing less disk space. A parameter termed granularity degree (GD) is defined to determine the threshold of how often it is required to store the precomputed statistics on disk. The solution supports the hierarchy of system resources and also different granularities of time ranges. We explain the architecture of the framework and show how it can be used to efficiently compute and extract the CPU usage and other system metrics. The importance of the framework and its different applications are shown and evaluated in this paper.","PeriodicalId":7046,"journal":{"name":"ACM SIGOPS Oper. Syst. Rev.","volume":"768 1","pages":"43-54"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"A framework to compute statistics of system parameters from very large trace files\",\"authors\":\"Naser Ezzati-Jivan, M. Dagenais\",\"doi\":\"10.1145/2433140.2433151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a framework to compute, store and retrieve statistics of various system metrics from large traces in an efficient way. The proposed framework allows for rapid interactive queries about system metrics values for any given time interval. In the proposed framework, efficient data structures and algorithms are designed to achieve a reasonable query time while utilizing less disk space. A parameter termed granularity degree (GD) is defined to determine the threshold of how often it is required to store the precomputed statistics on disk. The solution supports the hierarchy of system resources and also different granularities of time ranges. We explain the architecture of the framework and show how it can be used to efficiently compute and extract the CPU usage and other system metrics. The importance of the framework and its different applications are shown and evaluated in this paper.\",\"PeriodicalId\":7046,\"journal\":{\"name\":\"ACM SIGOPS Oper. Syst. Rev.\",\"volume\":\"768 1\",\"pages\":\"43-54\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGOPS Oper. Syst. Rev.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2433140.2433151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGOPS Oper. Syst. Rev.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2433140.2433151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

在本文中,我们提出了一个框架,以一种有效的方式计算、存储和检索各种系统指标的统计数据。提出的框架允许对任何给定时间间隔的系统度量值进行快速交互式查询。在该框架中,设计了高效的数据结构和算法,以在使用较少的磁盘空间的同时实现合理的查询时间。定义了一个称为粒度度(GD)的参数,用于确定需要在磁盘上存储预先计算的统计信息的频率阈值。该解决方案支持系统资源的层次结构和不同粒度的时间范围。我们解释了框架的体系结构,并展示了如何使用它来有效地计算和提取CPU使用率和其他系统指标。本文展示并评价了该框架的重要性及其不同的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A framework to compute statistics of system parameters from very large trace files
In this paper, we present a framework to compute, store and retrieve statistics of various system metrics from large traces in an efficient way. The proposed framework allows for rapid interactive queries about system metrics values for any given time interval. In the proposed framework, efficient data structures and algorithms are designed to achieve a reasonable query time while utilizing less disk space. A parameter termed granularity degree (GD) is defined to determine the threshold of how often it is required to store the precomputed statistics on disk. The solution supports the hierarchy of system resources and also different granularities of time ranges. We explain the architecture of the framework and show how it can be used to efficiently compute and extract the CPU usage and other system metrics. The importance of the framework and its different applications are shown and evaluated in this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信