McKean意义下非线性SDEs平均场粒子近似中的偏置行为和反采样

Oumaima Bencheikh, B. Jourdain
{"title":"McKean意义下非线性SDEs平均场粒子近似中的偏置行为和反采样","authors":"Oumaima Bencheikh, B. Jourdain","doi":"10.1051/PROC/201965219","DOIUrl":null,"url":null,"abstract":"In this paper, we prove that the weak error between a stochastic differential equation with nonlinearity in the sense of McKean given by moments and its approximation by the Euler discretization with time-step h of a system of N interacting particles is 𝒪(N-1+h). We provide numerical experiments confirming this behaviour and showing that it extends to more general mean-field interaction and study the efficiency of the antithetic sampling technique on the same examples.","PeriodicalId":53260,"journal":{"name":"ESAIM Proceedings and Surveys","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Bias behaviour and antithetic sampling in mean-field particle approximations of SDEs nonlinear in the sense of McKean\",\"authors\":\"Oumaima Bencheikh, B. Jourdain\",\"doi\":\"10.1051/PROC/201965219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we prove that the weak error between a stochastic differential equation with nonlinearity in the sense of McKean given by moments and its approximation by the Euler discretization with time-step h of a system of N interacting particles is 𝒪(N-1+h). We provide numerical experiments confirming this behaviour and showing that it extends to more general mean-field interaction and study the efficiency of the antithetic sampling technique on the same examples.\",\"PeriodicalId\":53260,\"journal\":{\"name\":\"ESAIM Proceedings and Surveys\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ESAIM Proceedings and Surveys\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/PROC/201965219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESAIM Proceedings and Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/PROC/201965219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文证明了N个相互作用粒子系统的具有矩表示的McKean意义上的非线性随机微分方程与用时间步长h进行欧拉离散的近似之间的弱误差为态(N-1+h)。我们提供了数值实验,证实了这种行为,并表明它扩展到更一般的平均场相互作用,并研究了在相同的例子上反采样技术的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bias behaviour and antithetic sampling in mean-field particle approximations of SDEs nonlinear in the sense of McKean
In this paper, we prove that the weak error between a stochastic differential equation with nonlinearity in the sense of McKean given by moments and its approximation by the Euler discretization with time-step h of a system of N interacting particles is 𝒪(N-1+h). We provide numerical experiments confirming this behaviour and showing that it extends to more general mean-field interaction and study the efficiency of the antithetic sampling technique on the same examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信