增强大数据应用的基于云的机器学习工具

A. Cuzzocrea, E. Mumolo, P. Corona
{"title":"增强大数据应用的基于云的机器学习工具","authors":"A. Cuzzocrea, E. Mumolo, P. Corona","doi":"10.1109/CCGrid.2015.170","DOIUrl":null,"url":null,"abstract":"We propose Cloud-based machine learning tools for enhanced Big Data applications, where the main idea is that of predicting the \"next\" workload occurring against the target Cloud infrastructure via an innovative ensemble-based approach that combine the effectiveness of different well-known classifiers in order to enhance the whole accuracy of the final classification, which is very relevant at now in the specific context of Big Data. So-called workload categorization problem plays a critical role towards improving the efficiency and the reliability of Cloud-based big data applications. Implementation-wise, our method proposes deploying Cloud entities that participate to the distributed classification approach on top of virtual machines, which represent classical \"commodity\" settings for Cloud-based big data applications. Preliminary experimental assessment and analysis clearly confirm the benefits deriving from our classification framework.","PeriodicalId":6664,"journal":{"name":"2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing","volume":"60 1","pages":"908-914"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Cloud-Based Machine Learning Tools for Enhanced Big Data Applications\",\"authors\":\"A. Cuzzocrea, E. Mumolo, P. Corona\",\"doi\":\"10.1109/CCGrid.2015.170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose Cloud-based machine learning tools for enhanced Big Data applications, where the main idea is that of predicting the \\\"next\\\" workload occurring against the target Cloud infrastructure via an innovative ensemble-based approach that combine the effectiveness of different well-known classifiers in order to enhance the whole accuracy of the final classification, which is very relevant at now in the specific context of Big Data. So-called workload categorization problem plays a critical role towards improving the efficiency and the reliability of Cloud-based big data applications. Implementation-wise, our method proposes deploying Cloud entities that participate to the distributed classification approach on top of virtual machines, which represent classical \\\"commodity\\\" settings for Cloud-based big data applications. Preliminary experimental assessment and analysis clearly confirm the benefits deriving from our classification framework.\",\"PeriodicalId\":6664,\"journal\":{\"name\":\"2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing\",\"volume\":\"60 1\",\"pages\":\"908-914\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCGrid.2015.170\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGrid.2015.170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们提出了用于增强大数据应用的基于云的机器学习工具,其主要思想是通过一种创新的基于集成的方法来预测针对目标云基础设施发生的“下一个”工作负载,该方法结合了不同知名分类器的有效性,以提高最终分类的整体准确性,这在目前的大数据特定背景下非常相关。所谓的工作负载分类问题对于提高基于云的大数据应用的效率和可靠性起着至关重要的作用。在实现方面,我们的方法建议在虚拟机上部署参与分布式分类方法的云实体,这代表了基于云的大数据应用程序的经典“商品”设置。初步的实验评估和分析清楚地证实了我们的分类框架所带来的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cloud-Based Machine Learning Tools for Enhanced Big Data Applications
We propose Cloud-based machine learning tools for enhanced Big Data applications, where the main idea is that of predicting the "next" workload occurring against the target Cloud infrastructure via an innovative ensemble-based approach that combine the effectiveness of different well-known classifiers in order to enhance the whole accuracy of the final classification, which is very relevant at now in the specific context of Big Data. So-called workload categorization problem plays a critical role towards improving the efficiency and the reliability of Cloud-based big data applications. Implementation-wise, our method proposes deploying Cloud entities that participate to the distributed classification approach on top of virtual machines, which represent classical "commodity" settings for Cloud-based big data applications. Preliminary experimental assessment and analysis clearly confirm the benefits deriving from our classification framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信