{"title":"增强大数据应用的基于云的机器学习工具","authors":"A. Cuzzocrea, E. Mumolo, P. Corona","doi":"10.1109/CCGrid.2015.170","DOIUrl":null,"url":null,"abstract":"We propose Cloud-based machine learning tools for enhanced Big Data applications, where the main idea is that of predicting the \"next\" workload occurring against the target Cloud infrastructure via an innovative ensemble-based approach that combine the effectiveness of different well-known classifiers in order to enhance the whole accuracy of the final classification, which is very relevant at now in the specific context of Big Data. So-called workload categorization problem plays a critical role towards improving the efficiency and the reliability of Cloud-based big data applications. Implementation-wise, our method proposes deploying Cloud entities that participate to the distributed classification approach on top of virtual machines, which represent classical \"commodity\" settings for Cloud-based big data applications. Preliminary experimental assessment and analysis clearly confirm the benefits deriving from our classification framework.","PeriodicalId":6664,"journal":{"name":"2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing","volume":"60 1","pages":"908-914"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Cloud-Based Machine Learning Tools for Enhanced Big Data Applications\",\"authors\":\"A. Cuzzocrea, E. Mumolo, P. Corona\",\"doi\":\"10.1109/CCGrid.2015.170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose Cloud-based machine learning tools for enhanced Big Data applications, where the main idea is that of predicting the \\\"next\\\" workload occurring against the target Cloud infrastructure via an innovative ensemble-based approach that combine the effectiveness of different well-known classifiers in order to enhance the whole accuracy of the final classification, which is very relevant at now in the specific context of Big Data. So-called workload categorization problem plays a critical role towards improving the efficiency and the reliability of Cloud-based big data applications. Implementation-wise, our method proposes deploying Cloud entities that participate to the distributed classification approach on top of virtual machines, which represent classical \\\"commodity\\\" settings for Cloud-based big data applications. Preliminary experimental assessment and analysis clearly confirm the benefits deriving from our classification framework.\",\"PeriodicalId\":6664,\"journal\":{\"name\":\"2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing\",\"volume\":\"60 1\",\"pages\":\"908-914\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCGrid.2015.170\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGrid.2015.170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cloud-Based Machine Learning Tools for Enhanced Big Data Applications
We propose Cloud-based machine learning tools for enhanced Big Data applications, where the main idea is that of predicting the "next" workload occurring against the target Cloud infrastructure via an innovative ensemble-based approach that combine the effectiveness of different well-known classifiers in order to enhance the whole accuracy of the final classification, which is very relevant at now in the specific context of Big Data. So-called workload categorization problem plays a critical role towards improving the efficiency and the reliability of Cloud-based big data applications. Implementation-wise, our method proposes deploying Cloud entities that participate to the distributed classification approach on top of virtual machines, which represent classical "commodity" settings for Cloud-based big data applications. Preliminary experimental assessment and analysis clearly confirm the benefits deriving from our classification framework.