横向变化介质中入射波传播的积分模拟:频域的探索

A. Jim'enez, Juan Carlos Muñoz Cuartas, S. Avendaño
{"title":"横向变化介质中入射波传播的积分模拟:频域的探索","authors":"A. Jim'enez, Juan Carlos Muñoz Cuartas, S. Avendaño","doi":"10.29047/01225383.79","DOIUrl":null,"url":null,"abstract":"In this work we present a formalism that intends to solve the problem of modeling wave propagation in the context of seismic inversion. The formalism is based on the linear perturbation theory of Cauchy’s equations. Based on the foregoing, we derived an equivalent Helmholtz equation for the propagation of waves in a variable density media. Then, we defined a solution, by using the boundary conditions on a half plane. This solution is of an integral nature and resembles expansion in a Neumann series. We implemented the solution of the first terms in the series, considering only the incident wavefield and neglecting the reflections. We show how this approximation works in different media that include lateral in homogeneities in the velocity. The method presented hereunder is intended as a first step in the modelling process for the full wavefield, to be used in seismic inversion methods, Full Waveform Inversion, for example.","PeriodicalId":10745,"journal":{"name":"CT&F - Ciencia, Tecnología y Futuro","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Integral modelling of propagation of incident waves in a laterally varying medium: An exploration in the frequency domain\",\"authors\":\"A. Jim'enez, Juan Carlos Muñoz Cuartas, S. Avendaño\",\"doi\":\"10.29047/01225383.79\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we present a formalism that intends to solve the problem of modeling wave propagation in the context of seismic inversion. The formalism is based on the linear perturbation theory of Cauchy’s equations. Based on the foregoing, we derived an equivalent Helmholtz equation for the propagation of waves in a variable density media. Then, we defined a solution, by using the boundary conditions on a half plane. This solution is of an integral nature and resembles expansion in a Neumann series. We implemented the solution of the first terms in the series, considering only the incident wavefield and neglecting the reflections. We show how this approximation works in different media that include lateral in homogeneities in the velocity. The method presented hereunder is intended as a first step in the modelling process for the full wavefield, to be used in seismic inversion methods, Full Waveform Inversion, for example.\",\"PeriodicalId\":10745,\"journal\":{\"name\":\"CT&F - Ciencia, Tecnología y Futuro\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CT&F - Ciencia, Tecnología y Futuro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29047/01225383.79\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CT&F - Ciencia, Tecnología y Futuro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29047/01225383.79","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在这项工作中,我们提出了一个旨在解决地震反演背景下波传播建模问题的形式化方法。这种形式是基于柯西方程的线性摄动理论。在此基础上,导出了波在变密度介质中传播的等效亥姆霍兹方程。然后,利用半平面上的边界条件,给出了方程的解。这个解具有积分性质,类似于诺伊曼级数的展开。在只考虑入射波场而忽略反射波场的情况下,我们实现了该级数第一项的解。我们展示了这个近似如何在不同的介质中工作,包括速度的横向均匀性。本文提出的方法旨在作为全波场建模过程的第一步,用于地震反演方法,例如全波形反演。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integral modelling of propagation of incident waves in a laterally varying medium: An exploration in the frequency domain
In this work we present a formalism that intends to solve the problem of modeling wave propagation in the context of seismic inversion. The formalism is based on the linear perturbation theory of Cauchy’s equations. Based on the foregoing, we derived an equivalent Helmholtz equation for the propagation of waves in a variable density media. Then, we defined a solution, by using the boundary conditions on a half plane. This solution is of an integral nature and resembles expansion in a Neumann series. We implemented the solution of the first terms in the series, considering only the incident wavefield and neglecting the reflections. We show how this approximation works in different media that include lateral in homogeneities in the velocity. The method presented hereunder is intended as a first step in the modelling process for the full wavefield, to be used in seismic inversion methods, Full Waveform Inversion, for example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信