{"title":"基于图像增强和照片特征提取的结肠镜检查视频信息帧分类","authors":"J. Nisha, V. Gopi, P. Palanisamy","doi":"10.4015/s1016237222500156","DOIUrl":null,"url":null,"abstract":"Colonoscopy allows doctors to check the abnormalities in the intestinal tract without any surgical operations. The major problem in the Computer-Aided Diagnosis (CAD) of colonoscopy images is the low illumination condition of the images. This study aims to provide an image enhancement method and feature extraction and classification techniques for detecting polyps in colonoscopy images. We propose a novel image enhancement method with a Pyramid Histogram of Oriented Gradients (PHOG) feature extractor to detect polyps in the colonoscopy images. The approach is evaluated across different classifiers, such as Multi-Layer Perceptron (MLP), Adaboost, Support Vector Machine (SVM), and Random Forest. The proposed method has been trained using the publicly available databases CVC ClinicDB and tested in ETIS Larib and CVC ColonDB. The proposed approach outperformed the existing state-of-the-art methods on both databases. The reliability of the classifiers performance was examined by comparing their F1 score, precision, F2 score, recall, and accuracy. PHOG with Random Forest classifier outperformed the existing methods in terms of recall of 97.95%, precision 98.46%, F1 score 98.20%, F2 score of 98.00%, and accuracy of 98.21% in the CVC-ColonDB. In the ETIS-LARIB dataset it attained a recall value of 96.83%, precision 98.65%, F1 score 97.73%, F2 score 98.59%, and accuracy of 97.75%. We observed that the proposed image enhancement method with PHOG feature extraction and the Random Forest classifier will help doctors to evaluate and analyze anomalies from colonoscopy data and make decisions quickly.","PeriodicalId":8862,"journal":{"name":"Biomedical Engineering: Applications, Basis and Communications","volume":"22 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"CLASSIFICATION OF INFORMATIVE FRAMES IN COLONOSCOPY VIDEO BASED ON IMAGE ENHANCEMENT AND PHOG FEATURE EXTRACTION\",\"authors\":\"J. Nisha, V. Gopi, P. Palanisamy\",\"doi\":\"10.4015/s1016237222500156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Colonoscopy allows doctors to check the abnormalities in the intestinal tract without any surgical operations. The major problem in the Computer-Aided Diagnosis (CAD) of colonoscopy images is the low illumination condition of the images. This study aims to provide an image enhancement method and feature extraction and classification techniques for detecting polyps in colonoscopy images. We propose a novel image enhancement method with a Pyramid Histogram of Oriented Gradients (PHOG) feature extractor to detect polyps in the colonoscopy images. The approach is evaluated across different classifiers, such as Multi-Layer Perceptron (MLP), Adaboost, Support Vector Machine (SVM), and Random Forest. The proposed method has been trained using the publicly available databases CVC ClinicDB and tested in ETIS Larib and CVC ColonDB. The proposed approach outperformed the existing state-of-the-art methods on both databases. The reliability of the classifiers performance was examined by comparing their F1 score, precision, F2 score, recall, and accuracy. PHOG with Random Forest classifier outperformed the existing methods in terms of recall of 97.95%, precision 98.46%, F1 score 98.20%, F2 score of 98.00%, and accuracy of 98.21% in the CVC-ColonDB. In the ETIS-LARIB dataset it attained a recall value of 96.83%, precision 98.65%, F1 score 97.73%, F2 score 98.59%, and accuracy of 97.75%. We observed that the proposed image enhancement method with PHOG feature extraction and the Random Forest classifier will help doctors to evaluate and analyze anomalies from colonoscopy data and make decisions quickly.\",\"PeriodicalId\":8862,\"journal\":{\"name\":\"Biomedical Engineering: Applications, Basis and Communications\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Engineering: Applications, Basis and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4015/s1016237222500156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering: Applications, Basis and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4015/s1016237222500156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
CLASSIFICATION OF INFORMATIVE FRAMES IN COLONOSCOPY VIDEO BASED ON IMAGE ENHANCEMENT AND PHOG FEATURE EXTRACTION
Colonoscopy allows doctors to check the abnormalities in the intestinal tract without any surgical operations. The major problem in the Computer-Aided Diagnosis (CAD) of colonoscopy images is the low illumination condition of the images. This study aims to provide an image enhancement method and feature extraction and classification techniques for detecting polyps in colonoscopy images. We propose a novel image enhancement method with a Pyramid Histogram of Oriented Gradients (PHOG) feature extractor to detect polyps in the colonoscopy images. The approach is evaluated across different classifiers, such as Multi-Layer Perceptron (MLP), Adaboost, Support Vector Machine (SVM), and Random Forest. The proposed method has been trained using the publicly available databases CVC ClinicDB and tested in ETIS Larib and CVC ColonDB. The proposed approach outperformed the existing state-of-the-art methods on both databases. The reliability of the classifiers performance was examined by comparing their F1 score, precision, F2 score, recall, and accuracy. PHOG with Random Forest classifier outperformed the existing methods in terms of recall of 97.95%, precision 98.46%, F1 score 98.20%, F2 score of 98.00%, and accuracy of 98.21% in the CVC-ColonDB. In the ETIS-LARIB dataset it attained a recall value of 96.83%, precision 98.65%, F1 score 97.73%, F2 score 98.59%, and accuracy of 97.75%. We observed that the proposed image enhancement method with PHOG feature extraction and the Random Forest classifier will help doctors to evaluate and analyze anomalies from colonoscopy data and make decisions quickly.
期刊介绍:
Biomedical Engineering: Applications, Basis and Communications is an international, interdisciplinary journal aiming at publishing up-to-date contributions on original clinical and basic research in the biomedical engineering. Research of biomedical engineering has grown tremendously in the past few decades. Meanwhile, several outstanding journals in the field have emerged, with different emphases and objectives. We hope this journal will serve as a new forum for both scientists and clinicians to share their ideas and the results of their studies.
Biomedical Engineering: Applications, Basis and Communications explores all facets of biomedical engineering, with emphasis on both the clinical and scientific aspects of the study. It covers the fields of bioelectronics, biomaterials, biomechanics, bioinformatics, nano-biological sciences and clinical engineering. The journal fulfils this aim by publishing regular research / clinical articles, short communications, technical notes and review papers. Papers from both basic research and clinical investigations will be considered.