基于SC-FDE的毫米波系统的迭代信道估计和相位噪声补偿

Changming Zhang, Zhenyu Xiao, L. Su, Lieguang Zeng, Depeng Jin
{"title":"基于SC-FDE的毫米波系统的迭代信道估计和相位噪声补偿","authors":"Changming Zhang, Zhenyu Xiao, L. Su, Lieguang Zeng, Depeng Jin","doi":"10.1109/ICCW.2015.7247497","DOIUrl":null,"url":null,"abstract":"In the future super dense wireless networks, millimeter-wave (mmWave) communications systems have great prospects, mainly due to the huge bandwidths and the directional transmissions. However, phase noise is significant due to the high oscillation frequency, which affects channel estimation and deteriorates the bit-error-rate (BER) performance. This paper emphasizes that phase noise may be estimated in the frequency domain, and a scheme with iterative channel estimation and phase noise compensation is proposed for single-carrier frequency-domain equalization (SC-FDE) based mmWave systems. We achieve channel estimation by calculating small perturbations iteratively with the first-order approximation. For signal demodulation, we adopt an iterative receiver to compensate phase noise with the decision feedback result. Comprehensive simulations demonstrate that our scheme achieves competitive performance and outperforms the traditional methods, in terms of both mean square error (MSE) in channel estimation and BER in signal demodulation.","PeriodicalId":6464,"journal":{"name":"2015 IEEE International Conference on Communication Workshop (ICCW)","volume":"53 1","pages":"2133-2138"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Iterative channel estimation and phase noise compensation for SC-FDE based mmWave systems\",\"authors\":\"Changming Zhang, Zhenyu Xiao, L. Su, Lieguang Zeng, Depeng Jin\",\"doi\":\"10.1109/ICCW.2015.7247497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the future super dense wireless networks, millimeter-wave (mmWave) communications systems have great prospects, mainly due to the huge bandwidths and the directional transmissions. However, phase noise is significant due to the high oscillation frequency, which affects channel estimation and deteriorates the bit-error-rate (BER) performance. This paper emphasizes that phase noise may be estimated in the frequency domain, and a scheme with iterative channel estimation and phase noise compensation is proposed for single-carrier frequency-domain equalization (SC-FDE) based mmWave systems. We achieve channel estimation by calculating small perturbations iteratively with the first-order approximation. For signal demodulation, we adopt an iterative receiver to compensate phase noise with the decision feedback result. Comprehensive simulations demonstrate that our scheme achieves competitive performance and outperforms the traditional methods, in terms of both mean square error (MSE) in channel estimation and BER in signal demodulation.\",\"PeriodicalId\":6464,\"journal\":{\"name\":\"2015 IEEE International Conference on Communication Workshop (ICCW)\",\"volume\":\"53 1\",\"pages\":\"2133-2138\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Communication Workshop (ICCW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCW.2015.7247497\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Communication Workshop (ICCW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCW.2015.7247497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

在未来的超密集无线网络中,毫米波通信系统具有巨大的带宽和定向传输的优势,具有广阔的应用前景。然而,由于高振荡频率,相位噪声很严重,影响信道估计,降低误码率性能。本文强调相位噪声可以在频域估计,并提出了一种基于单载波频域均衡(SC-FDE)的毫米波系统的迭代信道估计和相位噪声补偿方案。我们通过一阶近似迭代计算小扰动来实现信道估计。对于信号解调,我们采用迭代接收机用判决反馈结果补偿相位噪声。综合仿真结果表明,该方案在信道估计均方误差(MSE)和信号解调误码率方面均优于传统方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Iterative channel estimation and phase noise compensation for SC-FDE based mmWave systems
In the future super dense wireless networks, millimeter-wave (mmWave) communications systems have great prospects, mainly due to the huge bandwidths and the directional transmissions. However, phase noise is significant due to the high oscillation frequency, which affects channel estimation and deteriorates the bit-error-rate (BER) performance. This paper emphasizes that phase noise may be estimated in the frequency domain, and a scheme with iterative channel estimation and phase noise compensation is proposed for single-carrier frequency-domain equalization (SC-FDE) based mmWave systems. We achieve channel estimation by calculating small perturbations iteratively with the first-order approximation. For signal demodulation, we adopt an iterative receiver to compensate phase noise with the decision feedback result. Comprehensive simulations demonstrate that our scheme achieves competitive performance and outperforms the traditional methods, in terms of both mean square error (MSE) in channel estimation and BER in signal demodulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信