{"title":"结合光场多线索和大气散射模型的图像去雾算法","authors":"Wang Xin, Xudong Zhang, Zhang Jun, Sun Rui","doi":"10.12086/OEE.2020.190634","DOIUrl":null,"url":null,"abstract":"Image captured in foggy weather often exhibits low contrast and poor image quality, which may have a negative impact on computer vision applications. Aiming at these problems, we propose an image dehazing algorithm by combining light field technology with atmospheric scattering model. Firstly, taking the advantages of capturing multi-view information from light field camera is used to extracting defocus cues and correspondence cues, which are used to estimating the depth information of hazy images, and use the obtained depth information to calculating the scene’s initial transmission. Then use scene depth information to build a new weight function, and combined it with 1-norm context regularization to optimizing the initial transmission map iteratively. Finally, the central perspective image of hazy light field images is dehazed using atmospheric scattering model to obtain the final dehazed images. Experimental results on synthetic hazy images and real hazy images demonstrate that, compared to existing single image dehazing algorithms, the peak signal to noise ratio get 2 dB improvement and the structural similarity raise about 0.04. Moreover, our approach preserves more fine structural information of images and has faithful color fidelity, thus yielding a superior image dehazing result.","PeriodicalId":39552,"journal":{"name":"光电工程","volume":"1999 1","pages":"190634"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Image dehazing algorithm by combining light field multi-cues and atmospheric scattering model\",\"authors\":\"Wang Xin, Xudong Zhang, Zhang Jun, Sun Rui\",\"doi\":\"10.12086/OEE.2020.190634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image captured in foggy weather often exhibits low contrast and poor image quality, which may have a negative impact on computer vision applications. Aiming at these problems, we propose an image dehazing algorithm by combining light field technology with atmospheric scattering model. Firstly, taking the advantages of capturing multi-view information from light field camera is used to extracting defocus cues and correspondence cues, which are used to estimating the depth information of hazy images, and use the obtained depth information to calculating the scene’s initial transmission. Then use scene depth information to build a new weight function, and combined it with 1-norm context regularization to optimizing the initial transmission map iteratively. Finally, the central perspective image of hazy light field images is dehazed using atmospheric scattering model to obtain the final dehazed images. Experimental results on synthetic hazy images and real hazy images demonstrate that, compared to existing single image dehazing algorithms, the peak signal to noise ratio get 2 dB improvement and the structural similarity raise about 0.04. Moreover, our approach preserves more fine structural information of images and has faithful color fidelity, thus yielding a superior image dehazing result.\",\"PeriodicalId\":39552,\"journal\":{\"name\":\"光电工程\",\"volume\":\"1999 1\",\"pages\":\"190634\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"光电工程\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.12086/OEE.2020.190634\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"光电工程","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.12086/OEE.2020.190634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Image dehazing algorithm by combining light field multi-cues and atmospheric scattering model
Image captured in foggy weather often exhibits low contrast and poor image quality, which may have a negative impact on computer vision applications. Aiming at these problems, we propose an image dehazing algorithm by combining light field technology with atmospheric scattering model. Firstly, taking the advantages of capturing multi-view information from light field camera is used to extracting defocus cues and correspondence cues, which are used to estimating the depth information of hazy images, and use the obtained depth information to calculating the scene’s initial transmission. Then use scene depth information to build a new weight function, and combined it with 1-norm context regularization to optimizing the initial transmission map iteratively. Finally, the central perspective image of hazy light field images is dehazed using atmospheric scattering model to obtain the final dehazed images. Experimental results on synthetic hazy images and real hazy images demonstrate that, compared to existing single image dehazing algorithms, the peak signal to noise ratio get 2 dB improvement and the structural similarity raise about 0.04. Moreover, our approach preserves more fine structural information of images and has faithful color fidelity, thus yielding a superior image dehazing result.
光电工程Engineering-Electrical and Electronic Engineering
CiteScore
2.00
自引率
0.00%
发文量
6622
期刊介绍:
Founded in 1974, Opto-Electronic Engineering is an academic journal under the supervision of the Chinese Academy of Sciences and co-sponsored by the Institute of Optoelectronic Technology of the Chinese Academy of Sciences (IOTC) and the Optical Society of China (OSC). It is a core journal in Chinese and a core journal in Chinese science and technology, and it is included in domestic and international databases, such as Scopus, CA, CSCD, CNKI, and Wanfang.
Opto-Electronic Engineering is a peer-reviewed journal with subject areas including not only the basic disciplines of optics and electricity, but also engineering research and engineering applications. Optoelectronic Engineering mainly publishes scientific research progress, original results and reviews in the field of optoelectronics, and publishes related topics for hot issues and frontier subjects.
The main directions of the journal include:
- Optical design and optical engineering
- Photovoltaic technology and applications
- Lasers, optical fibres and communications
- Optical materials and photonic devices
- Optical Signal Processing