结合光场多线索和大气散射模型的图像去雾算法

Q3 Engineering
Wang Xin, Xudong Zhang, Zhang Jun, Sun Rui
{"title":"结合光场多线索和大气散射模型的图像去雾算法","authors":"Wang Xin, Xudong Zhang, Zhang Jun, Sun Rui","doi":"10.12086/OEE.2020.190634","DOIUrl":null,"url":null,"abstract":"Image captured in foggy weather often exhibits low contrast and poor image quality, which may have a negative impact on computer vision applications. Aiming at these problems, we propose an image dehazing algorithm by combining light field technology with atmospheric scattering model. Firstly, taking the advantages of capturing multi-view information from light field camera is used to extracting defocus cues and correspondence cues, which are used to estimating the depth information of hazy images, and use the obtained depth information to calculating the scene’s initial transmission. Then use scene depth information to build a new weight function, and combined it with 1-norm context regularization to optimizing the initial transmission map iteratively. Finally, the central perspective image of hazy light field images is dehazed using atmospheric scattering model to obtain the final dehazed images. Experimental results on synthetic hazy images and real hazy images demonstrate that, compared to existing single image dehazing algorithms, the peak signal to noise ratio get 2 dB improvement and the structural similarity raise about 0.04. Moreover, our approach preserves more fine structural information of images and has faithful color fidelity, thus yielding a superior image dehazing result.","PeriodicalId":39552,"journal":{"name":"光电工程","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Image dehazing algorithm by combining light field multi-cues and atmospheric scattering model\",\"authors\":\"Wang Xin, Xudong Zhang, Zhang Jun, Sun Rui\",\"doi\":\"10.12086/OEE.2020.190634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image captured in foggy weather often exhibits low contrast and poor image quality, which may have a negative impact on computer vision applications. Aiming at these problems, we propose an image dehazing algorithm by combining light field technology with atmospheric scattering model. Firstly, taking the advantages of capturing multi-view information from light field camera is used to extracting defocus cues and correspondence cues, which are used to estimating the depth information of hazy images, and use the obtained depth information to calculating the scene’s initial transmission. Then use scene depth information to build a new weight function, and combined it with 1-norm context regularization to optimizing the initial transmission map iteratively. Finally, the central perspective image of hazy light field images is dehazed using atmospheric scattering model to obtain the final dehazed images. Experimental results on synthetic hazy images and real hazy images demonstrate that, compared to existing single image dehazing algorithms, the peak signal to noise ratio get 2 dB improvement and the structural similarity raise about 0.04. Moreover, our approach preserves more fine structural information of images and has faithful color fidelity, thus yielding a superior image dehazing result.\",\"PeriodicalId\":39552,\"journal\":{\"name\":\"光电工程\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"光电工程\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.12086/OEE.2020.190634\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"光电工程","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.12086/OEE.2020.190634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

摘要

雾天拍摄的图像往往对比度低,图像质量差,这可能会对计算机视觉应用产生负面影响。针对这些问题,提出了一种将光场技术与大气散射模型相结合的图像去雾算法。首先,利用光场相机捕获多视角信息的优势,提取离焦线索和对应线索,用于估计朦胧图像的深度信息,并利用得到的深度信息计算场景的初始传输;然后利用场景深度信息构建新的权重函数,并结合1范数上下文正则化对初始传输图进行迭代优化。最后,利用大气散射模型对朦胧光场图像的中心透视图像进行去雾处理,得到最终去雾图像。在合成朦胧图像和真实朦胧图像上的实验结果表明,与现有的单幅图像去雾算法相比,峰值信噪比提高了2 dB,结构相似度提高了0.04左右。此外,我们的方法保留了图像更精细的结构信息,并且具有忠实的色彩保真度,从而获得了较好的图像去雾效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image dehazing algorithm by combining light field multi-cues and atmospheric scattering model
Image captured in foggy weather often exhibits low contrast and poor image quality, which may have a negative impact on computer vision applications. Aiming at these problems, we propose an image dehazing algorithm by combining light field technology with atmospheric scattering model. Firstly, taking the advantages of capturing multi-view information from light field camera is used to extracting defocus cues and correspondence cues, which are used to estimating the depth information of hazy images, and use the obtained depth information to calculating the scene’s initial transmission. Then use scene depth information to build a new weight function, and combined it with 1-norm context regularization to optimizing the initial transmission map iteratively. Finally, the central perspective image of hazy light field images is dehazed using atmospheric scattering model to obtain the final dehazed images. Experimental results on synthetic hazy images and real hazy images demonstrate that, compared to existing single image dehazing algorithms, the peak signal to noise ratio get 2 dB improvement and the structural similarity raise about 0.04. Moreover, our approach preserves more fine structural information of images and has faithful color fidelity, thus yielding a superior image dehazing result.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
光电工程
光电工程 Engineering-Electrical and Electronic Engineering
CiteScore
2.00
自引率
0.00%
发文量
6622
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信