{"title":"一个0.96mA静态电流,0.0032% THD+N, 1.45W的d类音频放大器,具有面积高效的pwm残余混叠抑制","authors":"Shih-Hsiung Chien, Yi-Wen Chen, T. Kuo","doi":"10.1109/ISSCC.2018.8310183","DOIUrl":null,"url":null,"abstract":"Low quiescent current (IQ) is critical for Class-D audio amplifiers in mobile devices to extend battery usage time [1], since typical audio signals have a high crest factor of 10 to 20dB. In addition, low distortion is also important for audio fidelity. Distortion sources in closed-loop Class-D amplifiers can be classified into two types. One is attributed to the nonlinearities of PWM modulators and power stages, while the other is due to the aliasing of fed-back PWM high-frequency residuals, the latter of which comprises phase-error and duty-cycle-error distortions [2]. Figure 3.6.1 shows 2nd-order closed-loop amplifiers and existing techniques for enhancing an amplifier's linearity. Increasing the loop filter order to obtain a higher in-band loop gain by using more integrators [3] or the single-amplifier-biquad [4] suppresses all aforementioned distortions except for the phase-error distortion, which can be suppressed by adding a phase-error-free PWM modulator [2]. However, these techniques increase IQ and/or die area due to the additional active circuits and/or several resistors and capacitors. Since phase-error distortion, as well as duty-cycle-error distortion, is caused by the fed-back PWM high-frequency residuals aliasing with the reference triangular wave VTRI, a uniform PWM [5] with a sample-and-hold circuit implemented before the PWM modulation reduces the PWM residuals via an equivalent notch filtering. However, loop stability is affected by the notch filtering unless the PWM switching frequency fSW is increased, but doing so increases power consumption [4]. Though the technique in [1] uses a feed-forward path with a replicated loop filter to eliminate the PWM residuals without affecting loop stability, the replicated loop filter increases both IQ and area.","PeriodicalId":6617,"journal":{"name":"2018 IEEE International Solid - State Circuits Conference - (ISSCC)","volume":"28 1","pages":"60-62"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A 0.96mA quiescent current, 0.0032% THD+N, 1.45W Class-D audio amplifier with area-efficient PWM-residual-aliasing reduction\",\"authors\":\"Shih-Hsiung Chien, Yi-Wen Chen, T. Kuo\",\"doi\":\"10.1109/ISSCC.2018.8310183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low quiescent current (IQ) is critical for Class-D audio amplifiers in mobile devices to extend battery usage time [1], since typical audio signals have a high crest factor of 10 to 20dB. In addition, low distortion is also important for audio fidelity. Distortion sources in closed-loop Class-D amplifiers can be classified into two types. One is attributed to the nonlinearities of PWM modulators and power stages, while the other is due to the aliasing of fed-back PWM high-frequency residuals, the latter of which comprises phase-error and duty-cycle-error distortions [2]. Figure 3.6.1 shows 2nd-order closed-loop amplifiers and existing techniques for enhancing an amplifier's linearity. Increasing the loop filter order to obtain a higher in-band loop gain by using more integrators [3] or the single-amplifier-biquad [4] suppresses all aforementioned distortions except for the phase-error distortion, which can be suppressed by adding a phase-error-free PWM modulator [2]. However, these techniques increase IQ and/or die area due to the additional active circuits and/or several resistors and capacitors. Since phase-error distortion, as well as duty-cycle-error distortion, is caused by the fed-back PWM high-frequency residuals aliasing with the reference triangular wave VTRI, a uniform PWM [5] with a sample-and-hold circuit implemented before the PWM modulation reduces the PWM residuals via an equivalent notch filtering. However, loop stability is affected by the notch filtering unless the PWM switching frequency fSW is increased, but doing so increases power consumption [4]. Though the technique in [1] uses a feed-forward path with a replicated loop filter to eliminate the PWM residuals without affecting loop stability, the replicated loop filter increases both IQ and area.\",\"PeriodicalId\":6617,\"journal\":{\"name\":\"2018 IEEE International Solid - State Circuits Conference - (ISSCC)\",\"volume\":\"28 1\",\"pages\":\"60-62\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Solid - State Circuits Conference - (ISSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC.2018.8310183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Solid - State Circuits Conference - (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2018.8310183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 0.96mA quiescent current, 0.0032% THD+N, 1.45W Class-D audio amplifier with area-efficient PWM-residual-aliasing reduction
Low quiescent current (IQ) is critical for Class-D audio amplifiers in mobile devices to extend battery usage time [1], since typical audio signals have a high crest factor of 10 to 20dB. In addition, low distortion is also important for audio fidelity. Distortion sources in closed-loop Class-D amplifiers can be classified into two types. One is attributed to the nonlinearities of PWM modulators and power stages, while the other is due to the aliasing of fed-back PWM high-frequency residuals, the latter of which comprises phase-error and duty-cycle-error distortions [2]. Figure 3.6.1 shows 2nd-order closed-loop amplifiers and existing techniques for enhancing an amplifier's linearity. Increasing the loop filter order to obtain a higher in-band loop gain by using more integrators [3] or the single-amplifier-biquad [4] suppresses all aforementioned distortions except for the phase-error distortion, which can be suppressed by adding a phase-error-free PWM modulator [2]. However, these techniques increase IQ and/or die area due to the additional active circuits and/or several resistors and capacitors. Since phase-error distortion, as well as duty-cycle-error distortion, is caused by the fed-back PWM high-frequency residuals aliasing with the reference triangular wave VTRI, a uniform PWM [5] with a sample-and-hold circuit implemented before the PWM modulation reduces the PWM residuals via an equivalent notch filtering. However, loop stability is affected by the notch filtering unless the PWM switching frequency fSW is increased, but doing so increases power consumption [4]. Though the technique in [1] uses a feed-forward path with a replicated loop filter to eliminate the PWM residuals without affecting loop stability, the replicated loop filter increases both IQ and area.