hamilton系统中的参数估计

Alejandra Hernandez, A. Poznyak
{"title":"hamilton系统中的参数估计","authors":"Alejandra Hernandez, A. Poznyak","doi":"10.1109/ICEEE.2018.8533938","DOIUrl":null,"url":null,"abstract":"Here we present two numerical procedures for the identification of Hamiltonian systems, applying the Lagragian and Hamiltonian formalism. The property of First Integrals and their characteristics are used to treats the identification as stabilization. The derivative of first integrals is realized by a super-twist differentiator. The convergence of this numerical procedure and its implementation for two dimensional models are presented.","PeriodicalId":6924,"journal":{"name":"2018 15th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","volume":"16 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Parametric Estimation in Hamiltonian Systems\",\"authors\":\"Alejandra Hernandez, A. Poznyak\",\"doi\":\"10.1109/ICEEE.2018.8533938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Here we present two numerical procedures for the identification of Hamiltonian systems, applying the Lagragian and Hamiltonian formalism. The property of First Integrals and their characteristics are used to treats the identification as stabilization. The derivative of first integrals is realized by a super-twist differentiator. The convergence of this numerical procedure and its implementation for two dimensional models are presented.\",\"PeriodicalId\":6924,\"journal\":{\"name\":\"2018 15th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)\",\"volume\":\"16 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 15th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEEE.2018.8533938\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEE.2018.8533938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文应用拉格拉格量和哈密顿形式主义,给出了哈密顿系统的两种数值识别方法。利用第一积分的性质及其特点,将辨识视为稳定化。一阶积分的求导是用超扭微分器实现的。给出了该数值过程的收敛性及其在二维模型上的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parametric Estimation in Hamiltonian Systems
Here we present two numerical procedures for the identification of Hamiltonian systems, applying the Lagragian and Hamiltonian formalism. The property of First Integrals and their characteristics are used to treats the identification as stabilization. The derivative of first integrals is realized by a super-twist differentiator. The convergence of this numerical procedure and its implementation for two dimensional models are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信