连续时间马尔可夫链的风险敏感控制

Pub Date : 2014-07-04 DOI:10.1080/17442508.2013.872644
M. K. Ghosh, Subhamay Saha
{"title":"连续时间马尔可夫链的风险敏感控制","authors":"M. K. Ghosh, Subhamay Saha","doi":"10.1080/17442508.2013.872644","DOIUrl":null,"url":null,"abstract":"We study risk-sensitive control of continuous time Markov chains taking values in discrete state space. We study both finite and infinite horizon problems. In the finite horizon problem we characterize the value function via Hamilton Jacobi Bellman equation and obtain an optimal Markov control. We do the same for infinite horizon discounted cost case. In the infinite horizon average cost case we establish the existence of an optimal stationary control under certain Lyapunov condition. We also develop a policy iteration algorithm for finding an optimal control.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2014-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"56","resultStr":"{\"title\":\"Risk-sensitive control of continuous time Markov chains\",\"authors\":\"M. K. Ghosh, Subhamay Saha\",\"doi\":\"10.1080/17442508.2013.872644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study risk-sensitive control of continuous time Markov chains taking values in discrete state space. We study both finite and infinite horizon problems. In the finite horizon problem we characterize the value function via Hamilton Jacobi Bellman equation and obtain an optimal Markov control. We do the same for infinite horizon discounted cost case. In the infinite horizon average cost case we establish the existence of an optimal stationary control under certain Lyapunov condition. We also develop a policy iteration algorithm for finding an optimal control.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2014-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"56\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/17442508.2013.872644\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/17442508.2013.872644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 56

摘要

研究离散状态空间中连续时间马尔可夫链的风险敏感控制。我们研究有限和无限视界问题。在有限视界问题中,利用Hamilton Jacobi Bellman方程对值函数进行表征,得到了最优马尔可夫控制。我们对无限视界折现成本情况做同样的处理。在无限视界平均代价情况下,在一定的Lyapunov条件下,建立了最优平稳控制的存在性。我们还开发了一种策略迭代算法来寻找最优控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Risk-sensitive control of continuous time Markov chains
We study risk-sensitive control of continuous time Markov chains taking values in discrete state space. We study both finite and infinite horizon problems. In the finite horizon problem we characterize the value function via Hamilton Jacobi Bellman equation and obtain an optimal Markov control. We do the same for infinite horizon discounted cost case. In the infinite horizon average cost case we establish the existence of an optimal stationary control under certain Lyapunov condition. We also develop a policy iteration algorithm for finding an optimal control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信