波方程四分之一平面的经典解

В. И. Корзюк, И. С. Козловская, В. Ю. Соколович
{"title":"波方程四分之一平面的经典解","authors":"В. И. Корзюк, И. С. Козловская, В. Ю. Соколович","doi":"10.29235/1561-8323-2018-62-6-647-651","DOIUrl":null,"url":null,"abstract":"This article presents the classical solution with mixed boundary conditions in the quarter of the plane for the wave equation in the analytical form. The boundary of the region consists of two perpendicular half-straight lines. On one of them, Cauchy’s boundary conditions are assigned. The second half-straight line is divided into two parts. Dirichlet’s condition is assigned on the straight line and Neumann’s conditions – on the half-straight line. The classical solution of the considered problem is defined in the class of double continuous differentiable functions in the quarter of the plane. To build this solution, the partial solution of the initial wave equation is written. For the assigned functions of the problem, the matching conditions are written, which are necessary and enough so that the solution of the problem would be classical and unique.","PeriodicalId":11227,"journal":{"name":"Doklady Akademii nauk","volume":"20 1","pages":"647-651"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Классическое решение в четверти плоскости смешанной задачи для волнового уравнения\",\"authors\":\"В. И. Корзюк, И. С. Козловская, В. Ю. Соколович\",\"doi\":\"10.29235/1561-8323-2018-62-6-647-651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents the classical solution with mixed boundary conditions in the quarter of the plane for the wave equation in the analytical form. The boundary of the region consists of two perpendicular half-straight lines. On one of them, Cauchy’s boundary conditions are assigned. The second half-straight line is divided into two parts. Dirichlet’s condition is assigned on the straight line and Neumann’s conditions – on the half-straight line. The classical solution of the considered problem is defined in the class of double continuous differentiable functions in the quarter of the plane. To build this solution, the partial solution of the initial wave equation is written. For the assigned functions of the problem, the matching conditions are written, which are necessary and enough so that the solution of the problem would be classical and unique.\",\"PeriodicalId\":11227,\"journal\":{\"name\":\"Doklady Akademii nauk\",\"volume\":\"20 1\",\"pages\":\"647-651\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Doklady Akademii nauk\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29235/1561-8323-2018-62-6-647-651\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Akademii nauk","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29235/1561-8323-2018-62-6-647-651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文给出了解析型波动方程在平面四分之一处具有混合边界条件的经典解。这个地区的边界由两条互相垂直的半直线组成。在其中一种情况下,给出了柯西边界条件。第二条半直线分为两部分。狄利克雷条件在直线上,诺伊曼条件在半直线上。该问题的经典解被定义为平面四分之一上的二重连续可微函数。为了建立这个解,写出了初始波动方程的部分解。对于问题的赋值函数,给出了足够的匹配条件,使问题的解具有经典性和唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Классическое решение в четверти плоскости смешанной задачи для волнового уравнения
This article presents the classical solution with mixed boundary conditions in the quarter of the plane for the wave equation in the analytical form. The boundary of the region consists of two perpendicular half-straight lines. On one of them, Cauchy’s boundary conditions are assigned. The second half-straight line is divided into two parts. Dirichlet’s condition is assigned on the straight line and Neumann’s conditions – on the half-straight line. The classical solution of the considered problem is defined in the class of double continuous differentiable functions in the quarter of the plane. To build this solution, the partial solution of the initial wave equation is written. For the assigned functions of the problem, the matching conditions are written, which are necessary and enough so that the solution of the problem would be classical and unique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信