半群代数近似双平坦性的几个刻画

IF 0.7 Q2 MATHEMATICS
N. Razi, A. Sahami
{"title":"半群代数近似双平坦性的几个刻画","authors":"N. Razi, A. Sahami","doi":"10.1155/2023/9961772","DOIUrl":null,"url":null,"abstract":"<jats:p>In this paper, we study an approximate biflatness of <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <msup>\n <mrow>\n <mi>l</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msup>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>S</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>, where <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <mi>S</mi>\n </math>\n </jats:inline-formula> is a Clifford semigroup. Indeed, we show that a Clifford semigroup algebra <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <msup>\n <mrow>\n <mi>l</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msup>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>S</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> is approximately biflat if and only if every maximal subgroup of <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <mi>S</mi>\n </math>\n </jats:inline-formula> is amenable, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\n <mi>E</mi>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>S</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> is locally finite, and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\">\n <msup>\n <mrow>\n <mi>l</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msup>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>S</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> has an approximate identity in <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M7\">\n <msub>\n <mrow>\n <mi>c</mi>\n </mrow>\n <mrow>\n <mn>00</mn>\n </mrow>\n </msub>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>S</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>. Moreover, we prove that <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M8\">\n <msup>\n <mrow>\n <mi>l</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msup>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>S</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> is approximately biflat if and only if each maximal subgroup of <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M9\">\n <mi>S</mi>\n </math>\n </jats:inline-formula> is amenable for an inverse semigroup <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M10\">\n <mi>S</mi>\n </math>\n </jats:inline-formula> such that <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M11\">\n <mi>E</mi>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>S</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>, the set of its idempotent elements, is totally ordered and locally finite.</jats:p>","PeriodicalId":43667,"journal":{"name":"Muenster Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some Characterizations for Approximate Biflatness of Semigroup Algebras\",\"authors\":\"N. Razi, A. Sahami\",\"doi\":\"10.1155/2023/9961772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:p>In this paper, we study an approximate biflatness of <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M1\\\">\\n <msup>\\n <mrow>\\n <mi>l</mi>\\n </mrow>\\n <mrow>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>S</mi>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula>, where <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M2\\\">\\n <mi>S</mi>\\n </math>\\n </jats:inline-formula> is a Clifford semigroup. Indeed, we show that a Clifford semigroup algebra <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M3\\\">\\n <msup>\\n <mrow>\\n <mi>l</mi>\\n </mrow>\\n <mrow>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>S</mi>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula> is approximately biflat if and only if every maximal subgroup of <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M4\\\">\\n <mi>S</mi>\\n </math>\\n </jats:inline-formula> is amenable, <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M5\\\">\\n <mi>E</mi>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>S</mi>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula> is locally finite, and <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M6\\\">\\n <msup>\\n <mrow>\\n <mi>l</mi>\\n </mrow>\\n <mrow>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>S</mi>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula> has an approximate identity in <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M7\\\">\\n <msub>\\n <mrow>\\n <mi>c</mi>\\n </mrow>\\n <mrow>\\n <mn>00</mn>\\n </mrow>\\n </msub>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>S</mi>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula>. Moreover, we prove that <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M8\\\">\\n <msup>\\n <mrow>\\n <mi>l</mi>\\n </mrow>\\n <mrow>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>S</mi>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula> is approximately biflat if and only if each maximal subgroup of <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M9\\\">\\n <mi>S</mi>\\n </math>\\n </jats:inline-formula> is amenable for an inverse semigroup <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M10\\\">\\n <mi>S</mi>\\n </math>\\n </jats:inline-formula> such that <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M11\\\">\\n <mi>E</mi>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>S</mi>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula>, the set of its idempotent elements, is totally ordered and locally finite.</jats:p>\",\"PeriodicalId\":43667,\"journal\":{\"name\":\"Muenster Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Muenster Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/9961772\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Muenster Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/9961772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了1 S的近似双平坦性,其中S是Clifford半群。的确,证明了Clifford半群代数l1s是近似双平的当且仅当每S的极大子群是可服从的,es是局部有限的,11s近似等价于c 00 S。此外,证明s1是近似双平面的当且仅当的每个极大子群S可以满足逆半群S,使得E S,它的幂等元素的集合,是完全有序和局部有限的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some Characterizations for Approximate Biflatness of Semigroup Algebras
In this paper, we study an approximate biflatness of l 1 S , where S is a Clifford semigroup. Indeed, we show that a Clifford semigroup algebra l 1 S is approximately biflat if and only if every maximal subgroup of S is amenable, E S is locally finite, and l 1 S has an approximate identity in c 00 S . Moreover, we prove that l 1 S is approximately biflat if and only if each maximal subgroup of S is amenable for an inverse semigroup S such that E S , the set of its idempotent elements, is totally ordered and locally finite.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信