N. Razi, A. Sahami
求助PDF
{"title":"半群代数近似双平坦性的几个刻画","authors":"N. Razi, A. Sahami","doi":"10.1155/2023/9961772","DOIUrl":null,"url":null,"abstract":"<jats:p>In this paper, we study an approximate biflatness of <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <msup>\n <mrow>\n <mi>l</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msup>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>S</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>, where <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <mi>S</mi>\n </math>\n </jats:inline-formula> is a Clifford semigroup. Indeed, we show that a Clifford semigroup algebra <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <msup>\n <mrow>\n <mi>l</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msup>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>S</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> is approximately biflat if and only if every maximal subgroup of <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <mi>S</mi>\n </math>\n </jats:inline-formula> is amenable, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\n <mi>E</mi>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>S</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> is locally finite, and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\">\n <msup>\n <mrow>\n <mi>l</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msup>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>S</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> has an approximate identity in <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M7\">\n <msub>\n <mrow>\n <mi>c</mi>\n </mrow>\n <mrow>\n <mn>00</mn>\n </mrow>\n </msub>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>S</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>. Moreover, we prove that <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M8\">\n <msup>\n <mrow>\n <mi>l</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msup>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>S</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> is approximately biflat if and only if each maximal subgroup of <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M9\">\n <mi>S</mi>\n </math>\n </jats:inline-formula> is amenable for an inverse semigroup <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M10\">\n <mi>S</mi>\n </math>\n </jats:inline-formula> such that <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M11\">\n <mi>E</mi>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>S</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>, the set of its idempotent elements, is totally ordered and locally finite.</jats:p>","PeriodicalId":43667,"journal":{"name":"Muenster Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some Characterizations for Approximate Biflatness of Semigroup Algebras\",\"authors\":\"N. Razi, A. Sahami\",\"doi\":\"10.1155/2023/9961772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:p>In this paper, we study an approximate biflatness of <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M1\\\">\\n <msup>\\n <mrow>\\n <mi>l</mi>\\n </mrow>\\n <mrow>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>S</mi>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula>, where <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M2\\\">\\n <mi>S</mi>\\n </math>\\n </jats:inline-formula> is a Clifford semigroup. Indeed, we show that a Clifford semigroup algebra <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M3\\\">\\n <msup>\\n <mrow>\\n <mi>l</mi>\\n </mrow>\\n <mrow>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>S</mi>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula> is approximately biflat if and only if every maximal subgroup of <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M4\\\">\\n <mi>S</mi>\\n </math>\\n </jats:inline-formula> is amenable, <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M5\\\">\\n <mi>E</mi>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>S</mi>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula> is locally finite, and <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M6\\\">\\n <msup>\\n <mrow>\\n <mi>l</mi>\\n </mrow>\\n <mrow>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>S</mi>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula> has an approximate identity in <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M7\\\">\\n <msub>\\n <mrow>\\n <mi>c</mi>\\n </mrow>\\n <mrow>\\n <mn>00</mn>\\n </mrow>\\n </msub>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>S</mi>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula>. Moreover, we prove that <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M8\\\">\\n <msup>\\n <mrow>\\n <mi>l</mi>\\n </mrow>\\n <mrow>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>S</mi>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula> is approximately biflat if and only if each maximal subgroup of <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M9\\\">\\n <mi>S</mi>\\n </math>\\n </jats:inline-formula> is amenable for an inverse semigroup <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M10\\\">\\n <mi>S</mi>\\n </math>\\n </jats:inline-formula> such that <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M11\\\">\\n <mi>E</mi>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>S</mi>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula>, the set of its idempotent elements, is totally ordered and locally finite.</jats:p>\",\"PeriodicalId\":43667,\"journal\":{\"name\":\"Muenster Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Muenster Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/9961772\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Muenster Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/9961772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用
Some Characterizations for Approximate Biflatness of Semigroup Algebras
In this paper, we study an approximate biflatness of
l
1
S
, where
S
is a Clifford semigroup. Indeed, we show that a Clifford semigroup algebra
l
1
S
is approximately biflat if and only if every maximal subgroup of
S
is amenable,
E
S
is locally finite, and
l
1
S
has an approximate identity in
c
00
S
. Moreover, we prove that
l
1
S
is approximately biflat if and only if each maximal subgroup of
S
is amenable for an inverse semigroup
S
such that
E
S
, the set of its idempotent elements, is totally ordered and locally finite.