从随机错误中有效解码Reed-Muller码

Ramprasad Saptharishi, Amir Shpilka, Ben lee Volk
{"title":"从随机错误中有效解码Reed-Muller码","authors":"Ramprasad Saptharishi, Amir Shpilka, Ben lee Volk","doi":"10.1109/TIT.2017.2671410","DOIUrl":null,"url":null,"abstract":"Reed–Muller (RM) codes encode an $m$ -variate polynomial of degree at most $r$ by evaluating it on all points in $\\{0,1\\}^{m}$ . We denote this code by $RM(r,m)$ . The minimum distance of $RM(r,m)$ is $2^{m-r}$ and so it cannot correct more than half that number of errors in the worst case. For random errors one may hope for a better result. In this paper we give an efficient algorithm (in the block length $n=2^{m}$ ) for decoding random errors in RM codes far beyond the minimum distance. Specifically, for low-rate codes (of degree $r=o(\\sqrt {m})$ ), we can correct a random set of $(1/2-o(1))n$ errors with high probability. For high rate codes (of degree $m-r$ for $r=o(\\sqrt {m/\\log m})$ ), we can correct roughly $m^{r/2}$ errors. More generally, for any integer $r$ , our algorithm can correct any error pattern in $RM(m-(2r+2),m)$ , for which the same erasure pattern can be corrected in $RM(m-(r+1),m)$ . The results above are obtained by applying recent results of Abbe, Shpilka, and Wigderson (STOC, 2015) and Kudekar et al. (STOC, 2016) regarding the ability of RM codes to correct random erasures. The algorithm is based on solving a carefully defined set of linear equations and thus it is significantly different than other algorithms for decoding RM codes that are based on the recursive structure of the code. It can be seen as a more explicit proof of a result of Abbe et al. that shows a reduction from correcting erasures to correcting errors, and it also bares some similarities with the error-locating pair method of Pellikaan, Duursma, and Kotter that generalizes the Berlekamp–Welch algorithm for decoding Reed–Solomon codes.","PeriodicalId":13250,"journal":{"name":"IEEE Trans. Inf. Theory","volume":"30 1","pages":"1954-1960"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Efficiently Decoding Reed-Muller Codes From Random Errors\",\"authors\":\"Ramprasad Saptharishi, Amir Shpilka, Ben lee Volk\",\"doi\":\"10.1109/TIT.2017.2671410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reed–Muller (RM) codes encode an $m$ -variate polynomial of degree at most $r$ by evaluating it on all points in $\\\\{0,1\\\\}^{m}$ . We denote this code by $RM(r,m)$ . The minimum distance of $RM(r,m)$ is $2^{m-r}$ and so it cannot correct more than half that number of errors in the worst case. For random errors one may hope for a better result. In this paper we give an efficient algorithm (in the block length $n=2^{m}$ ) for decoding random errors in RM codes far beyond the minimum distance. Specifically, for low-rate codes (of degree $r=o(\\\\sqrt {m})$ ), we can correct a random set of $(1/2-o(1))n$ errors with high probability. For high rate codes (of degree $m-r$ for $r=o(\\\\sqrt {m/\\\\log m})$ ), we can correct roughly $m^{r/2}$ errors. More generally, for any integer $r$ , our algorithm can correct any error pattern in $RM(m-(2r+2),m)$ , for which the same erasure pattern can be corrected in $RM(m-(r+1),m)$ . The results above are obtained by applying recent results of Abbe, Shpilka, and Wigderson (STOC, 2015) and Kudekar et al. (STOC, 2016) regarding the ability of RM codes to correct random erasures. The algorithm is based on solving a carefully defined set of linear equations and thus it is significantly different than other algorithms for decoding RM codes that are based on the recursive structure of the code. It can be seen as a more explicit proof of a result of Abbe et al. that shows a reduction from correcting erasures to correcting errors, and it also bares some similarities with the error-locating pair method of Pellikaan, Duursma, and Kotter that generalizes the Berlekamp–Welch algorithm for decoding Reed–Solomon codes.\",\"PeriodicalId\":13250,\"journal\":{\"name\":\"IEEE Trans. Inf. Theory\",\"volume\":\"30 1\",\"pages\":\"1954-1960\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Trans. Inf. Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TIT.2017.2671410\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Inf. Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TIT.2017.2671410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

Reed-Muller (RM)码通过对$\{0,1\}^{m}$中的所有点求值来编码一个最多$r$次的$m$变量多项式。我们用$RM(r,m)$表示这个代码。$RM(r,m)$的最小距离是$2^{m-r}$,所以在最坏的情况下,它不能纠正超过一半的错误。对于随机误差,人们可能希望得到更好的结果。在本文中,我们给出了一个有效的算法(在块长度$n=2^{m}$中),用于解码远超过最小距离的RM码中的随机错误。具体来说,对于低率代码(程度为$r=o(\sqrt {m})$),我们可以高概率地纠正一组随机的$(1/2-o(1))n$错误。对于高速率代码($r=o(\sqrt {m/\log m})$的程度为$m-r$),我们可以大致纠正$m^{r/2}$错误。更一般地说,对于任何整数$r$,我们的算法可以纠正$RM(m-(2r+2),m)$中的任何错误模式,而对于相同的擦除模式,可以纠正$RM(m-(r+1),m)$中的错误模式。上述结果是通过应用Abbe, Shpilka和Wigderson (STOC, 2015)和Kudekar等人(STOC, 2016)关于RM代码纠正随机擦除的能力的最新结果获得的。该算法基于求解一组精心定义的线性方程,因此它与其他基于代码递归结构的RM代码解码算法有很大不同。它可以看作是对Abbe等人的结果的更明确的证明,该结果显示了从纠正擦除到纠正错误的减少,并且它也与Pellikaan, Duursma和Kotter的错误定位对方法有一些相似之处,该方法推广了解码Reed-Solomon码的berlekam - welch算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficiently Decoding Reed-Muller Codes From Random Errors
Reed–Muller (RM) codes encode an $m$ -variate polynomial of degree at most $r$ by evaluating it on all points in $\{0,1\}^{m}$ . We denote this code by $RM(r,m)$ . The minimum distance of $RM(r,m)$ is $2^{m-r}$ and so it cannot correct more than half that number of errors in the worst case. For random errors one may hope for a better result. In this paper we give an efficient algorithm (in the block length $n=2^{m}$ ) for decoding random errors in RM codes far beyond the minimum distance. Specifically, for low-rate codes (of degree $r=o(\sqrt {m})$ ), we can correct a random set of $(1/2-o(1))n$ errors with high probability. For high rate codes (of degree $m-r$ for $r=o(\sqrt {m/\log m})$ ), we can correct roughly $m^{r/2}$ errors. More generally, for any integer $r$ , our algorithm can correct any error pattern in $RM(m-(2r+2),m)$ , for which the same erasure pattern can be corrected in $RM(m-(r+1),m)$ . The results above are obtained by applying recent results of Abbe, Shpilka, and Wigderson (STOC, 2015) and Kudekar et al. (STOC, 2016) regarding the ability of RM codes to correct random erasures. The algorithm is based on solving a carefully defined set of linear equations and thus it is significantly different than other algorithms for decoding RM codes that are based on the recursive structure of the code. It can be seen as a more explicit proof of a result of Abbe et al. that shows a reduction from correcting erasures to correcting errors, and it also bares some similarities with the error-locating pair method of Pellikaan, Duursma, and Kotter that generalizes the Berlekamp–Welch algorithm for decoding Reed–Solomon codes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信