利用神经网络的李雅普诺夫函数的低秩核逼近

IF 1 Q3 Engineering
K. Webster
{"title":"利用神经网络的李雅普诺夫函数的低秩核逼近","authors":"K. Webster","doi":"10.3934/jcd.2022026","DOIUrl":null,"url":null,"abstract":"We study the use of single hidden layer neural networks for the approximation of Lyapunov functions in autonomous ordinary differential equations. In particular, we focus on the connection between this approach and that of the meshless collocation method using reproducing kernel Hilbert spaces. It is shown that under certain conditions, an optimised neural network is functionally equivalent to the RKHS generalised interpolant solution corresponding to a kernel function that is implicitly defined by the neural network. We demonstrate convergence of the neural network approximation using several numerical examples, and compare with approximations obtained by the meshless collocation method. Finally, motivated by our theoretical and numerical findings, we propose a new iterative algorithm for the approximation of Lyapunov functions using single hidden layer neural networks.","PeriodicalId":37526,"journal":{"name":"Journal of Computational Dynamics","volume":"13 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Low-rank kernel approximation of Lyapunov functions using neural networks\",\"authors\":\"K. Webster\",\"doi\":\"10.3934/jcd.2022026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the use of single hidden layer neural networks for the approximation of Lyapunov functions in autonomous ordinary differential equations. In particular, we focus on the connection between this approach and that of the meshless collocation method using reproducing kernel Hilbert spaces. It is shown that under certain conditions, an optimised neural network is functionally equivalent to the RKHS generalised interpolant solution corresponding to a kernel function that is implicitly defined by the neural network. We demonstrate convergence of the neural network approximation using several numerical examples, and compare with approximations obtained by the meshless collocation method. Finally, motivated by our theoretical and numerical findings, we propose a new iterative algorithm for the approximation of Lyapunov functions using single hidden layer neural networks.\",\"PeriodicalId\":37526,\"journal\":{\"name\":\"Journal of Computational Dynamics\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/jcd.2022026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/jcd.2022026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

摘要

研究了用单隐层神经网络逼近自治常微分方程中的李雅普诺夫函数。特别地,我们关注这种方法与使用再现核希尔伯特空间的无网格配置方法之间的联系。结果表明,在一定条件下,优化后的神经网络在功能上等同于神经网络隐式定义的核函数所对应的RKHS广义插值解。我们用几个数值例子证明了神经网络逼近的收敛性,并与无网格配置法得到的逼近进行了比较。最后,根据我们的理论和数值研究结果,我们提出了一种新的迭代算法,用于使用单隐层神经网络逼近Lyapunov函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-rank kernel approximation of Lyapunov functions using neural networks
We study the use of single hidden layer neural networks for the approximation of Lyapunov functions in autonomous ordinary differential equations. In particular, we focus on the connection between this approach and that of the meshless collocation method using reproducing kernel Hilbert spaces. It is shown that under certain conditions, an optimised neural network is functionally equivalent to the RKHS generalised interpolant solution corresponding to a kernel function that is implicitly defined by the neural network. We demonstrate convergence of the neural network approximation using several numerical examples, and compare with approximations obtained by the meshless collocation method. Finally, motivated by our theoretical and numerical findings, we propose a new iterative algorithm for the approximation of Lyapunov functions using single hidden layer neural networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Dynamics
Journal of Computational Dynamics Engineering-Computational Mechanics
CiteScore
2.30
自引率
10.00%
发文量
31
期刊介绍: JCD is focused on the intersection of computation with deterministic and stochastic dynamics. The mission of the journal is to publish papers that explore new computational methods for analyzing dynamic problems or use novel dynamical methods to improve computation. The subject matter of JCD includes both fundamental mathematical contributions and applications to problems from science and engineering. A non-exhaustive list of topics includes * Computation of phase-space structures and bifurcations * Multi-time-scale methods * Structure-preserving integration * Nonlinear and stochastic model reduction * Set-valued numerical techniques * Network and distributed dynamics JCD includes both original research and survey papers that give a detailed and illuminating treatment of an important area of current interest. The editorial board of JCD consists of world-leading researchers from mathematics, engineering, and science, all of whom are experts in both computational methods and the theory of dynamical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信