{"title":"随机最后一英里运输与人群运输和移动仓库","authors":"Kianoush Mousavi, Merve Bodur, M. Roorda","doi":"10.1287/trsc.2021.1088","DOIUrl":null,"url":null,"abstract":"This paper proposes a two-tier last-mile delivery model that optimally selects mobile depot locations in advance of full information about the availability of crowd-shippers and then transfers packages to crowd-shippers for the final shipment to the customers. Uncertainty in crowd-shipper availability is incorporated by modeling the problem as a two-stage stochastic integer program. Enhanced decomposition solution algorithms including branch-and-cut and cut-and-project frameworks are developed. A risk-averse approach is compared against a risk-neutral approach by assessing conditional-value-at-risk. A detailed computational study based on the City of Toronto is conducted. The deterministic version of the model outperforms a capacitated vehicle routing problem on average by 20%. For the stochastic model, decomposition algorithms usually discover near-optimal solutions within two hours for instances up to a size of 30 mobile depot locations, 40 customers, and 120 crowd-shippers. The cut-and-project approach outperforms the branch-and-cut approach by up to 85% in the risk-averse setting in certain instances. The stochastic model provides solutions that are 3.35%–6.08% better than the deterministic model, and the improvements are magnified with increased uncertainty in crowd-shipper availability. A risk-averse approach leads the operator to send more mobile depots or postpone customer deliveries to reduce the risk of high penalties for nondelivery.","PeriodicalId":23247,"journal":{"name":"Transp. Sci.","volume":"20 1","pages":"612-630"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Stochastic Last-Mile Delivery with Crowd-Shipping and Mobile Depots\",\"authors\":\"Kianoush Mousavi, Merve Bodur, M. Roorda\",\"doi\":\"10.1287/trsc.2021.1088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a two-tier last-mile delivery model that optimally selects mobile depot locations in advance of full information about the availability of crowd-shippers and then transfers packages to crowd-shippers for the final shipment to the customers. Uncertainty in crowd-shipper availability is incorporated by modeling the problem as a two-stage stochastic integer program. Enhanced decomposition solution algorithms including branch-and-cut and cut-and-project frameworks are developed. A risk-averse approach is compared against a risk-neutral approach by assessing conditional-value-at-risk. A detailed computational study based on the City of Toronto is conducted. The deterministic version of the model outperforms a capacitated vehicle routing problem on average by 20%. For the stochastic model, decomposition algorithms usually discover near-optimal solutions within two hours for instances up to a size of 30 mobile depot locations, 40 customers, and 120 crowd-shippers. The cut-and-project approach outperforms the branch-and-cut approach by up to 85% in the risk-averse setting in certain instances. The stochastic model provides solutions that are 3.35%–6.08% better than the deterministic model, and the improvements are magnified with increased uncertainty in crowd-shipper availability. A risk-averse approach leads the operator to send more mobile depots or postpone customer deliveries to reduce the risk of high penalties for nondelivery.\",\"PeriodicalId\":23247,\"journal\":{\"name\":\"Transp. Sci.\",\"volume\":\"20 1\",\"pages\":\"612-630\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transp. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1287/trsc.2021.1088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transp. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/trsc.2021.1088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stochastic Last-Mile Delivery with Crowd-Shipping and Mobile Depots
This paper proposes a two-tier last-mile delivery model that optimally selects mobile depot locations in advance of full information about the availability of crowd-shippers and then transfers packages to crowd-shippers for the final shipment to the customers. Uncertainty in crowd-shipper availability is incorporated by modeling the problem as a two-stage stochastic integer program. Enhanced decomposition solution algorithms including branch-and-cut and cut-and-project frameworks are developed. A risk-averse approach is compared against a risk-neutral approach by assessing conditional-value-at-risk. A detailed computational study based on the City of Toronto is conducted. The deterministic version of the model outperforms a capacitated vehicle routing problem on average by 20%. For the stochastic model, decomposition algorithms usually discover near-optimal solutions within two hours for instances up to a size of 30 mobile depot locations, 40 customers, and 120 crowd-shippers. The cut-and-project approach outperforms the branch-and-cut approach by up to 85% in the risk-averse setting in certain instances. The stochastic model provides solutions that are 3.35%–6.08% better than the deterministic model, and the improvements are magnified with increased uncertainty in crowd-shipper availability. A risk-averse approach leads the operator to send more mobile depots or postpone customer deliveries to reduce the risk of high penalties for nondelivery.