混合分数阶随机热方程的参数估计

IF 0.7 Q3 STATISTICS & PROBABILITY
D. Avetisian, K. Ralchenko
{"title":"混合分数阶随机热方程的参数估计","authors":"D. Avetisian, K. Ralchenko","doi":"10.15559/23-vmsta221","DOIUrl":null,"url":null,"abstract":"The paper is devoted to a stochastic heat equation with a mixed fractional Brownian noise. We investigate the covariance structure, stationarity, upper bounds and asymptotic behavior of the solution. Based on its discrete-time observations, we construct a strongly consistent estimator for the Hurst index H and prove the asymptotic normality for $H<3/4$. Then assuming the parameter H to be known, we deal with joint estimation of the coefficients at the Wiener process and at the fractional Brownian motion. The quality of estimators is illustrated by simulation experiments.","PeriodicalId":42685,"journal":{"name":"Modern Stochastics-Theory and Applications","volume":"60 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parameter estimation in mixed fractional stochastic heat equation\",\"authors\":\"D. Avetisian, K. Ralchenko\",\"doi\":\"10.15559/23-vmsta221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper is devoted to a stochastic heat equation with a mixed fractional Brownian noise. We investigate the covariance structure, stationarity, upper bounds and asymptotic behavior of the solution. Based on its discrete-time observations, we construct a strongly consistent estimator for the Hurst index H and prove the asymptotic normality for $H<3/4$. Then assuming the parameter H to be known, we deal with joint estimation of the coefficients at the Wiener process and at the fractional Brownian motion. The quality of estimators is illustrated by simulation experiments.\",\"PeriodicalId\":42685,\"journal\":{\"name\":\"Modern Stochastics-Theory and Applications\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Stochastics-Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15559/23-vmsta221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Stochastics-Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15559/23-vmsta221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

研究了一类含混合分数布朗噪声的随机热方程。我们研究了解的协方差结构、平稳性、上界和渐近性。基于它的离散时间观测,构造了Hurst指数H的一个强一致估计量,并证明了H<3/4$的渐近正态性。然后假设参数H已知,我们处理维纳过程和分数布朗运动系数的联合估计。仿真实验证明了估计器的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parameter estimation in mixed fractional stochastic heat equation
The paper is devoted to a stochastic heat equation with a mixed fractional Brownian noise. We investigate the covariance structure, stationarity, upper bounds and asymptotic behavior of the solution. Based on its discrete-time observations, we construct a strongly consistent estimator for the Hurst index H and prove the asymptotic normality for $H<3/4$. Then assuming the parameter H to be known, we deal with joint estimation of the coefficients at the Wiener process and at the fractional Brownian motion. The quality of estimators is illustrated by simulation experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Modern Stochastics-Theory and Applications
Modern Stochastics-Theory and Applications STATISTICS & PROBABILITY-
CiteScore
1.30
自引率
50.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信