{"title":"混合分数阶随机热方程的参数估计","authors":"D. Avetisian, K. Ralchenko","doi":"10.15559/23-vmsta221","DOIUrl":null,"url":null,"abstract":"The paper is devoted to a stochastic heat equation with a mixed fractional Brownian noise. We investigate the covariance structure, stationarity, upper bounds and asymptotic behavior of the solution. Based on its discrete-time observations, we construct a strongly consistent estimator for the Hurst index H and prove the asymptotic normality for $H<3/4$. Then assuming the parameter H to be known, we deal with joint estimation of the coefficients at the Wiener process and at the fractional Brownian motion. The quality of estimators is illustrated by simulation experiments.","PeriodicalId":42685,"journal":{"name":"Modern Stochastics-Theory and Applications","volume":"60 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parameter estimation in mixed fractional stochastic heat equation\",\"authors\":\"D. Avetisian, K. Ralchenko\",\"doi\":\"10.15559/23-vmsta221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper is devoted to a stochastic heat equation with a mixed fractional Brownian noise. We investigate the covariance structure, stationarity, upper bounds and asymptotic behavior of the solution. Based on its discrete-time observations, we construct a strongly consistent estimator for the Hurst index H and prove the asymptotic normality for $H<3/4$. Then assuming the parameter H to be known, we deal with joint estimation of the coefficients at the Wiener process and at the fractional Brownian motion. The quality of estimators is illustrated by simulation experiments.\",\"PeriodicalId\":42685,\"journal\":{\"name\":\"Modern Stochastics-Theory and Applications\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Stochastics-Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15559/23-vmsta221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Stochastics-Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15559/23-vmsta221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Parameter estimation in mixed fractional stochastic heat equation
The paper is devoted to a stochastic heat equation with a mixed fractional Brownian noise. We investigate the covariance structure, stationarity, upper bounds and asymptotic behavior of the solution. Based on its discrete-time observations, we construct a strongly consistent estimator for the Hurst index H and prove the asymptotic normality for $H<3/4$. Then assuming the parameter H to be known, we deal with joint estimation of the coefficients at the Wiener process and at the fractional Brownian motion. The quality of estimators is illustrated by simulation experiments.