突然收缩两相流的流体动力学和压降预测

IF 1.8 3区 工程技术 Q3 ENGINEERING, MECHANICAL
S. Patra, M. K. Roul, P. Satapathy, A. Barik
{"title":"突然收缩两相流的流体动力学和压降预测","authors":"S. Patra, M. K. Roul, P. Satapathy, A. Barik","doi":"10.1115/1.4050962","DOIUrl":null,"url":null,"abstract":"\n The aim of the present study is to investigate fluid dynamics and pressure drop across sudden contractions in a two-dimensional, axisymmetric pipe carrying a two-phase mixture of air (secondary phase) and water (primary phase), using the Eulerian–Eulerian model of the multiphase flow physics to solve the mass, momentum, volume fraction and turbulent quantities with relevant boundary conditions in a finite volume framework. The realizable per-phase k-ε and Reynolds stress models have been used as the closure for turbulent quantities along with enhanced wall function for the near-wall treatment. The effects of various parameters such as mass flux, mass flow quality, area ratio (0.056–0.619), flow directions (horizontal/vertical), and system pressure on the two-phase pressure drops due to a contraction in the pipe have been quantified. For both the single and two-phase flows, it has been observed that the pressure drop decreases with area ratio, and increases with mass flux and mass flow quality of two-phase flow. The vena contracta for a single-phase flow was found. But for two-phase flow, neither the vena contracta nor the recirculation zone has been observed, as the mass quality exceeds above 50%. A higher pressure drop has been observed for vertical pipes as compared to horizontal pipes. The present numerical results have also been validated with published experimental results, believed to be one of the alternatives to the costly experimental methods for predicting the flow dynamics and pressure drop.","PeriodicalId":54833,"journal":{"name":"Journal of Fluids Engineering-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Fluid Dynamics and Pressure Drop Prediction of Two-Phase Flow Through Sudden Contractions\",\"authors\":\"S. Patra, M. K. Roul, P. Satapathy, A. Barik\",\"doi\":\"10.1115/1.4050962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The aim of the present study is to investigate fluid dynamics and pressure drop across sudden contractions in a two-dimensional, axisymmetric pipe carrying a two-phase mixture of air (secondary phase) and water (primary phase), using the Eulerian–Eulerian model of the multiphase flow physics to solve the mass, momentum, volume fraction and turbulent quantities with relevant boundary conditions in a finite volume framework. The realizable per-phase k-ε and Reynolds stress models have been used as the closure for turbulent quantities along with enhanced wall function for the near-wall treatment. The effects of various parameters such as mass flux, mass flow quality, area ratio (0.056–0.619), flow directions (horizontal/vertical), and system pressure on the two-phase pressure drops due to a contraction in the pipe have been quantified. For both the single and two-phase flows, it has been observed that the pressure drop decreases with area ratio, and increases with mass flux and mass flow quality of two-phase flow. The vena contracta for a single-phase flow was found. But for two-phase flow, neither the vena contracta nor the recirculation zone has been observed, as the mass quality exceeds above 50%. A higher pressure drop has been observed for vertical pipes as compared to horizontal pipes. The present numerical results have also been validated with published experimental results, believed to be one of the alternatives to the costly experimental methods for predicting the flow dynamics and pressure drop.\",\"PeriodicalId\":54833,\"journal\":{\"name\":\"Journal of Fluids Engineering-Transactions of the Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluids Engineering-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4050962\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluids Engineering-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4050962","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 3

摘要

本研究的目的是研究二维轴对称管道中空气(次级相)和水(初级相)两相混合物的流体动力学和突然收缩时的压降,使用多相流物理学的欧拉-欧拉模型在有限体积框架中求解具有相关边界条件的质量、动量、体积分数和湍流量。采用可实现的每相k-ε和雷诺应力模型作为紊流量的封闭模型,并增强了近壁处理的壁面函数。量化了质量流量、质量流质量、面积比(0.056 ~ 0.619)、流动方向(水平/垂直)、系统压力等参数对管道收缩引起的两相压降的影响。无论是单相流还是两相流,压降都随面积比的增大而减小,随两相流的质量流量和质量流质量的增大而增大。发现了单相流的收缩静脉。但对于两相流,没有观察到静脉收缩和再循环区,质量超过50%以上。与水平管道相比,垂直管道的压降更高。本文的数值计算结果也得到了已发表的实验结果的验证,被认为是替代昂贵的实验方法来预测流动动力学和压降的一种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fluid Dynamics and Pressure Drop Prediction of Two-Phase Flow Through Sudden Contractions
The aim of the present study is to investigate fluid dynamics and pressure drop across sudden contractions in a two-dimensional, axisymmetric pipe carrying a two-phase mixture of air (secondary phase) and water (primary phase), using the Eulerian–Eulerian model of the multiphase flow physics to solve the mass, momentum, volume fraction and turbulent quantities with relevant boundary conditions in a finite volume framework. The realizable per-phase k-ε and Reynolds stress models have been used as the closure for turbulent quantities along with enhanced wall function for the near-wall treatment. The effects of various parameters such as mass flux, mass flow quality, area ratio (0.056–0.619), flow directions (horizontal/vertical), and system pressure on the two-phase pressure drops due to a contraction in the pipe have been quantified. For both the single and two-phase flows, it has been observed that the pressure drop decreases with area ratio, and increases with mass flux and mass flow quality of two-phase flow. The vena contracta for a single-phase flow was found. But for two-phase flow, neither the vena contracta nor the recirculation zone has been observed, as the mass quality exceeds above 50%. A higher pressure drop has been observed for vertical pipes as compared to horizontal pipes. The present numerical results have also been validated with published experimental results, believed to be one of the alternatives to the costly experimental methods for predicting the flow dynamics and pressure drop.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.60
自引率
10.00%
发文量
165
审稿时长
5.0 months
期刊介绍: Multiphase flows; Pumps; Aerodynamics; Boundary layers; Bubbly flows; Cavitation; Compressible flows; Convective heat/mass transfer as it is affected by fluid flow; Duct and pipe flows; Free shear layers; Flows in biological systems; Fluid-structure interaction; Fluid transients and wave motion; Jets; Naval hydrodynamics; Sprays; Stability and transition; Turbulence wakes microfluidics and other fundamental/applied fluid mechanical phenomena and processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信