{"title":"突然收缩两相流的流体动力学和压降预测","authors":"S. Patra, M. K. Roul, P. Satapathy, A. Barik","doi":"10.1115/1.4050962","DOIUrl":null,"url":null,"abstract":"\n The aim of the present study is to investigate fluid dynamics and pressure drop across sudden contractions in a two-dimensional, axisymmetric pipe carrying a two-phase mixture of air (secondary phase) and water (primary phase), using the Eulerian–Eulerian model of the multiphase flow physics to solve the mass, momentum, volume fraction and turbulent quantities with relevant boundary conditions in a finite volume framework. The realizable per-phase k-ε and Reynolds stress models have been used as the closure for turbulent quantities along with enhanced wall function for the near-wall treatment. The effects of various parameters such as mass flux, mass flow quality, area ratio (0.056–0.619), flow directions (horizontal/vertical), and system pressure on the two-phase pressure drops due to a contraction in the pipe have been quantified. For both the single and two-phase flows, it has been observed that the pressure drop decreases with area ratio, and increases with mass flux and mass flow quality of two-phase flow. The vena contracta for a single-phase flow was found. But for two-phase flow, neither the vena contracta nor the recirculation zone has been observed, as the mass quality exceeds above 50%. A higher pressure drop has been observed for vertical pipes as compared to horizontal pipes. The present numerical results have also been validated with published experimental results, believed to be one of the alternatives to the costly experimental methods for predicting the flow dynamics and pressure drop.","PeriodicalId":54833,"journal":{"name":"Journal of Fluids Engineering-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Fluid Dynamics and Pressure Drop Prediction of Two-Phase Flow Through Sudden Contractions\",\"authors\":\"S. Patra, M. K. Roul, P. Satapathy, A. Barik\",\"doi\":\"10.1115/1.4050962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The aim of the present study is to investigate fluid dynamics and pressure drop across sudden contractions in a two-dimensional, axisymmetric pipe carrying a two-phase mixture of air (secondary phase) and water (primary phase), using the Eulerian–Eulerian model of the multiphase flow physics to solve the mass, momentum, volume fraction and turbulent quantities with relevant boundary conditions in a finite volume framework. The realizable per-phase k-ε and Reynolds stress models have been used as the closure for turbulent quantities along with enhanced wall function for the near-wall treatment. The effects of various parameters such as mass flux, mass flow quality, area ratio (0.056–0.619), flow directions (horizontal/vertical), and system pressure on the two-phase pressure drops due to a contraction in the pipe have been quantified. For both the single and two-phase flows, it has been observed that the pressure drop decreases with area ratio, and increases with mass flux and mass flow quality of two-phase flow. The vena contracta for a single-phase flow was found. But for two-phase flow, neither the vena contracta nor the recirculation zone has been observed, as the mass quality exceeds above 50%. A higher pressure drop has been observed for vertical pipes as compared to horizontal pipes. The present numerical results have also been validated with published experimental results, believed to be one of the alternatives to the costly experimental methods for predicting the flow dynamics and pressure drop.\",\"PeriodicalId\":54833,\"journal\":{\"name\":\"Journal of Fluids Engineering-Transactions of the Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluids Engineering-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4050962\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluids Engineering-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4050962","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Fluid Dynamics and Pressure Drop Prediction of Two-Phase Flow Through Sudden Contractions
The aim of the present study is to investigate fluid dynamics and pressure drop across sudden contractions in a two-dimensional, axisymmetric pipe carrying a two-phase mixture of air (secondary phase) and water (primary phase), using the Eulerian–Eulerian model of the multiphase flow physics to solve the mass, momentum, volume fraction and turbulent quantities with relevant boundary conditions in a finite volume framework. The realizable per-phase k-ε and Reynolds stress models have been used as the closure for turbulent quantities along with enhanced wall function for the near-wall treatment. The effects of various parameters such as mass flux, mass flow quality, area ratio (0.056–0.619), flow directions (horizontal/vertical), and system pressure on the two-phase pressure drops due to a contraction in the pipe have been quantified. For both the single and two-phase flows, it has been observed that the pressure drop decreases with area ratio, and increases with mass flux and mass flow quality of two-phase flow. The vena contracta for a single-phase flow was found. But for two-phase flow, neither the vena contracta nor the recirculation zone has been observed, as the mass quality exceeds above 50%. A higher pressure drop has been observed for vertical pipes as compared to horizontal pipes. The present numerical results have also been validated with published experimental results, believed to be one of the alternatives to the costly experimental methods for predicting the flow dynamics and pressure drop.
期刊介绍:
Multiphase flows; Pumps; Aerodynamics; Boundary layers; Bubbly flows; Cavitation; Compressible flows; Convective heat/mass transfer as it is affected by fluid flow; Duct and pipe flows; Free shear layers; Flows in biological systems; Fluid-structure interaction; Fluid transients and wave motion; Jets; Naval hydrodynamics; Sprays; Stability and transition; Turbulence wakes microfluidics and other fundamental/applied fluid mechanical phenomena and processes