提高预测准确性的混合需求预测模型:以制药行业为例

Raheel Siddiqui, Muhammad Azmat, Shehzad Ahmed, S. Kummer
{"title":"提高预测准确性的混合需求预测模型:以制药行业为例","authors":"Raheel Siddiqui, Muhammad Azmat, Shehzad Ahmed, S. Kummer","doi":"10.1080/16258312.2021.1967081","DOIUrl":null,"url":null,"abstract":"ABSTRACT In the era of modern technology, the competitive paradigm among organisations is changing at an unprecedented rate. New success measures are applied to the organisation’s supply chain performance to outperform the competition. However, this lead can only be obtained and sustained if the organisation has an effective and efficient supply chain and an appropriate forecasting technique. Thus, this study presents the demand-forecasting model, i.e., a good fit for the pharmaceutical sector, and shows promising results. Through this study, it is observed that combining forecasting algorithms can result in greater forecasting accuracies. Therefore, a combined forecasting technique ARIMA-HW hybrid1 i.e. (ARHOW) combines the Autoregressive Integrated Moving Average and Holt’ s-Winter model. The empirical findings confirm that ARHOW performs better than widely used forecasting techniques ARIMA, Holts Winter, ETS and Theta. The results of the study indicate that pharmaceutical companies can adopt this model for improved demand forecasting.","PeriodicalId":22004,"journal":{"name":"Supply Chain Forum: An International Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"A hybrid demand forecasting model for greater forecasting accuracy: the case of the pharmaceutical industry\",\"authors\":\"Raheel Siddiqui, Muhammad Azmat, Shehzad Ahmed, S. Kummer\",\"doi\":\"10.1080/16258312.2021.1967081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In the era of modern technology, the competitive paradigm among organisations is changing at an unprecedented rate. New success measures are applied to the organisation’s supply chain performance to outperform the competition. However, this lead can only be obtained and sustained if the organisation has an effective and efficient supply chain and an appropriate forecasting technique. Thus, this study presents the demand-forecasting model, i.e., a good fit for the pharmaceutical sector, and shows promising results. Through this study, it is observed that combining forecasting algorithms can result in greater forecasting accuracies. Therefore, a combined forecasting technique ARIMA-HW hybrid1 i.e. (ARHOW) combines the Autoregressive Integrated Moving Average and Holt’ s-Winter model. The empirical findings confirm that ARHOW performs better than widely used forecasting techniques ARIMA, Holts Winter, ETS and Theta. The results of the study indicate that pharmaceutical companies can adopt this model for improved demand forecasting.\",\"PeriodicalId\":22004,\"journal\":{\"name\":\"Supply Chain Forum: An International Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Supply Chain Forum: An International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/16258312.2021.1967081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Supply Chain Forum: An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/16258312.2021.1967081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

在现代技术时代,组织之间的竞争模式正在以前所未有的速度发生变化。新的成功措施应用于组织的供应链绩效,以超越竞争对手。然而,只有在组织拥有有效和高效的供应链和适当的预测技术的情况下,这种领先才能获得和维持。因此,本研究提出的需求预测模型,即很适合制药行业,并显示出良好的结果。通过本研究发现,结合预测算法可以获得更高的预测精度。因此,ARIMA-HW hybrid1即(ARHOW)组合预测技术结合了自回归综合移动平均和Holt’s-Winter模型。实证结果证实,ARHOW的表现优于广泛使用的预测技术ARIMA、Holts Winter、ETS和Theta。研究结果表明,制药公司可以采用该模型来改进需求预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A hybrid demand forecasting model for greater forecasting accuracy: the case of the pharmaceutical industry
ABSTRACT In the era of modern technology, the competitive paradigm among organisations is changing at an unprecedented rate. New success measures are applied to the organisation’s supply chain performance to outperform the competition. However, this lead can only be obtained and sustained if the organisation has an effective and efficient supply chain and an appropriate forecasting technique. Thus, this study presents the demand-forecasting model, i.e., a good fit for the pharmaceutical sector, and shows promising results. Through this study, it is observed that combining forecasting algorithms can result in greater forecasting accuracies. Therefore, a combined forecasting technique ARIMA-HW hybrid1 i.e. (ARHOW) combines the Autoregressive Integrated Moving Average and Holt’ s-Winter model. The empirical findings confirm that ARHOW performs better than widely used forecasting techniques ARIMA, Holts Winter, ETS and Theta. The results of the study indicate that pharmaceutical companies can adopt this model for improved demand forecasting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信