Wenping Xie, Zuyan Zhang, N. Xu, Li Li, Z. Wang, Xiaoyu Luo
{"title":"基于有限粒子法的导体风成振动研究","authors":"Wenping Xie, Zuyan Zhang, N. Xu, Li Li, Z. Wang, Xiaoyu Luo","doi":"10.18178/IJOEE.4.3.143-151","DOIUrl":null,"url":null,"abstract":"Destruction of transmission lines due to Aeolian vibration is more and more serious recently with wide applications of the Ultra High Voltage Technology, so it is necessary to study the response of Aeolian vibration of conductor. This paper uses the finite particle method which is different from the energy balance method to research the transmission line’s response under Aeolian vibration. Base on vector mechanics of structures, the finite particle method divides a structure into particles which are linked by elements. The movement of the particles is followed by the Newton’s second law. By establishing the relationship between the Stockbridge-type damper’s force and particle’s displacement, the responses of Aeolian vibrations of conductors with different type dampers and that with different locations of dampers are calculated. Because the finite particle method can consider the damper’s dynamic characteristics, the mass and geometric nonlinearity of a conductor, this method can produce a more accurate analysis result than the energy balance method. At last, the three-dimensional response of Aeolian vibration of conductor is calculated which shows the damping will weaken the lateral movement of a conductor. ","PeriodicalId":13951,"journal":{"name":"International Journal of Electrical Energy","volume":"11 11 1","pages":"143-151"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Aeolian Vibration of a Conductor Based on Finite Particle Method\",\"authors\":\"Wenping Xie, Zuyan Zhang, N. Xu, Li Li, Z. Wang, Xiaoyu Luo\",\"doi\":\"10.18178/IJOEE.4.3.143-151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Destruction of transmission lines due to Aeolian vibration is more and more serious recently with wide applications of the Ultra High Voltage Technology, so it is necessary to study the response of Aeolian vibration of conductor. This paper uses the finite particle method which is different from the energy balance method to research the transmission line’s response under Aeolian vibration. Base on vector mechanics of structures, the finite particle method divides a structure into particles which are linked by elements. The movement of the particles is followed by the Newton’s second law. By establishing the relationship between the Stockbridge-type damper’s force and particle’s displacement, the responses of Aeolian vibrations of conductors with different type dampers and that with different locations of dampers are calculated. Because the finite particle method can consider the damper’s dynamic characteristics, the mass and geometric nonlinearity of a conductor, this method can produce a more accurate analysis result than the energy balance method. At last, the three-dimensional response of Aeolian vibration of conductor is calculated which shows the damping will weaken the lateral movement of a conductor. \",\"PeriodicalId\":13951,\"journal\":{\"name\":\"International Journal of Electrical Energy\",\"volume\":\"11 11 1\",\"pages\":\"143-151\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18178/IJOEE.4.3.143-151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18178/IJOEE.4.3.143-151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Research on Aeolian Vibration of a Conductor Based on Finite Particle Method
Destruction of transmission lines due to Aeolian vibration is more and more serious recently with wide applications of the Ultra High Voltage Technology, so it is necessary to study the response of Aeolian vibration of conductor. This paper uses the finite particle method which is different from the energy balance method to research the transmission line’s response under Aeolian vibration. Base on vector mechanics of structures, the finite particle method divides a structure into particles which are linked by elements. The movement of the particles is followed by the Newton’s second law. By establishing the relationship between the Stockbridge-type damper’s force and particle’s displacement, the responses of Aeolian vibrations of conductors with different type dampers and that with different locations of dampers are calculated. Because the finite particle method can consider the damper’s dynamic characteristics, the mass and geometric nonlinearity of a conductor, this method can produce a more accurate analysis result than the energy balance method. At last, the three-dimensional response of Aeolian vibration of conductor is calculated which shows the damping will weaken the lateral movement of a conductor.