Vulcont:基于上下文历史本体的推荐系统

IET Softw. Pub Date : 2021-07-11 DOI:10.1049/SFW2.12034
Ismael M. G. Cardoso, Jorge L. V. Barbosa, Bruno Mota, L. P. S. Dias, L. Nesi
{"title":"Vulcont:基于上下文历史本体的推荐系统","authors":"Ismael M. G. Cardoso, Jorge L. V. Barbosa, Bruno Mota, L. P. S. Dias, L. Nesi","doi":"10.1049/SFW2.12034","DOIUrl":null,"url":null,"abstract":"The use of recommender systems is already widespread. Everyday people are exposed to different items’ offering that infer their interest and anticipate decisions. The context information (such as location, goals, and entities around a context) plays a key role in the recommendation’s accuracy. Extending contexts snapshots into contexts histories enables that information to be exploit. It is possible to identify context’s sequences, similar contexts histories and even predict future contexts. In this work we present Vulcont, a recommender system based on a contexts history ontology. Vulcont merges the benefits of ontology reasoning with contexts histories in order to measure contexts history similarity, based on semantic and ontology’s properties provided by context’s domain. Vulcont considers synonymous and classes’ relations to measure similarity. After that, a collaborative filtering approach identifies sequences’ frequency to identify potential items for recommendation. We evaluated and discussed the Vulcont’s recommendation in four scenarios in an offline experiment, which presents Vulcont’s recommendation power, due the exploit of semantic value of contexts history.","PeriodicalId":13395,"journal":{"name":"IET Softw.","volume":"9 1","pages":"111-123"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Vulcont: A recommender system based on context history ontology\",\"authors\":\"Ismael M. G. Cardoso, Jorge L. V. Barbosa, Bruno Mota, L. P. S. Dias, L. Nesi\",\"doi\":\"10.1049/SFW2.12034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of recommender systems is already widespread. Everyday people are exposed to different items’ offering that infer their interest and anticipate decisions. The context information (such as location, goals, and entities around a context) plays a key role in the recommendation’s accuracy. Extending contexts snapshots into contexts histories enables that information to be exploit. It is possible to identify context’s sequences, similar contexts histories and even predict future contexts. In this work we present Vulcont, a recommender system based on a contexts history ontology. Vulcont merges the benefits of ontology reasoning with contexts histories in order to measure contexts history similarity, based on semantic and ontology’s properties provided by context’s domain. Vulcont considers synonymous and classes’ relations to measure similarity. After that, a collaborative filtering approach identifies sequences’ frequency to identify potential items for recommendation. We evaluated and discussed the Vulcont’s recommendation in four scenarios in an offline experiment, which presents Vulcont’s recommendation power, due the exploit of semantic value of contexts history.\",\"PeriodicalId\":13395,\"journal\":{\"name\":\"IET Softw.\",\"volume\":\"9 1\",\"pages\":\"111-123\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Softw.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/SFW2.12034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Softw.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/SFW2.12034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

推荐系统的使用已经很普遍了。人们每天都会接触到不同的产品,这些产品可以推断出他们的兴趣并预测他们的决定。上下文信息(例如位置、目标和上下文周围的实体)在推荐的准确性中起着关键作用。将上下文快照扩展到上下文历史中可以利用该信息。它可以识别上下文的顺序,相似的上下文历史,甚至预测未来的上下文。在这项工作中,我们提出了Vulcont,一个基于上下文历史本体的推荐系统。Vulcont基于上下文域提供的语义和本体属性,将本体推理的优势与上下文历史结合起来,以衡量上下文历史的相似性。Vulcont考虑同义词和类的关系来衡量相似性。然后,协同过滤方法识别序列的频率,以识别潜在的推荐项目。我们在离线实验中对Vulcont在四种场景下的推荐进行了评估和讨论,通过利用上下文历史的语义价值,展示了Vulcont的推荐能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vulcont: A recommender system based on context history ontology
The use of recommender systems is already widespread. Everyday people are exposed to different items’ offering that infer their interest and anticipate decisions. The context information (such as location, goals, and entities around a context) plays a key role in the recommendation’s accuracy. Extending contexts snapshots into contexts histories enables that information to be exploit. It is possible to identify context’s sequences, similar contexts histories and even predict future contexts. In this work we present Vulcont, a recommender system based on a contexts history ontology. Vulcont merges the benefits of ontology reasoning with contexts histories in order to measure contexts history similarity, based on semantic and ontology’s properties provided by context’s domain. Vulcont considers synonymous and classes’ relations to measure similarity. After that, a collaborative filtering approach identifies sequences’ frequency to identify potential items for recommendation. We evaluated and discussed the Vulcont’s recommendation in four scenarios in an offline experiment, which presents Vulcont’s recommendation power, due the exploit of semantic value of contexts history.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信