具有状态相关不连续的Abel微分方程的反周期解

J. Belley, A. Gueye
{"title":"具有状态相关不连续的Abel微分方程的反周期解","authors":"J. Belley, A. Gueye","doi":"10.7153/DEA-09-18","DOIUrl":null,"url":null,"abstract":"Given T > 0 , the Abel-like equation θ ′ = f0 + ∑ j∈N f jθ j is generalized to the case where θ and θ ′ are real functions on [0,T ] subject to given state dependent discontinuities. Each f j is a real function of bounded variation for which f j(0) = (−1) j+1 f j(T ) . Under appropriate conditions, this equation is shown to admit a solution of bounded variation on [0,T ] which is T -anti-periodic in the sense that θ (0) = −θ (T) . The contraction principle yields a bound for the rate of uniform convergence to the solution of a sequence of iterates.","PeriodicalId":11162,"journal":{"name":"Differential Equations and Applications","volume":"48 1","pages":"219-239"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Anti-periodic solutions of Abel differential equations with state dependent discontinuities\",\"authors\":\"J. Belley, A. Gueye\",\"doi\":\"10.7153/DEA-09-18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given T > 0 , the Abel-like equation θ ′ = f0 + ∑ j∈N f jθ j is generalized to the case where θ and θ ′ are real functions on [0,T ] subject to given state dependent discontinuities. Each f j is a real function of bounded variation for which f j(0) = (−1) j+1 f j(T ) . Under appropriate conditions, this equation is shown to admit a solution of bounded variation on [0,T ] which is T -anti-periodic in the sense that θ (0) = −θ (T) . The contraction principle yields a bound for the rate of uniform convergence to the solution of a sequence of iterates.\",\"PeriodicalId\":11162,\"journal\":{\"name\":\"Differential Equations and Applications\",\"volume\":\"48 1\",\"pages\":\"219-239\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Equations and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7153/DEA-09-18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/DEA-09-18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

当T > 0时,将类abel方程θ ' = f0 +∑j∈N f jθ j推广到θ和θ '是[0,T]上的实数函数,服从给定的状态相关不连续。每个f j是一个有界变分的实函数,其中f j(0) = (- 1) j+1 f j(T)。在适当的条件下,证明了该方程在[0,T]上有界变分的解在θ (0) = - θ (T)的意义上是T -反周期的。压缩原理给出了迭代序列解的一致收敛速率的一个界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anti-periodic solutions of Abel differential equations with state dependent discontinuities
Given T > 0 , the Abel-like equation θ ′ = f0 + ∑ j∈N f jθ j is generalized to the case where θ and θ ′ are real functions on [0,T ] subject to given state dependent discontinuities. Each f j is a real function of bounded variation for which f j(0) = (−1) j+1 f j(T ) . Under appropriate conditions, this equation is shown to admit a solution of bounded variation on [0,T ] which is T -anti-periodic in the sense that θ (0) = −θ (T) . The contraction principle yields a bound for the rate of uniform convergence to the solution of a sequence of iterates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信