Shay Deutsch, Soheil Kolouri, Kyungnam Kim, Y. Owechko, Stefano Soatto
{"title":"基于多尺度流形正则化的零射击学习","authors":"Shay Deutsch, Soheil Kolouri, Kyungnam Kim, Y. Owechko, Stefano Soatto","doi":"10.1109/CVPR.2017.562","DOIUrl":null,"url":null,"abstract":"We address zero-shot learning using a new manifold alignment framework based on a localized multi-scale transform on graphs. Our inference approach includes a smoothness criterion for a function mapping nodes on a graph (visual representation) onto a linear space (semantic representation), which we optimize using multi-scale graph wavelets. The robustness of the ensuing scheme allows us to operate with automatically generated semantic annotations, resulting in an algorithm that is entirely free of manual supervision, and yet improves the state-of-the-art as measured on benchmark datasets.","PeriodicalId":6631,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"30 1","pages":"5292-5299"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":"{\"title\":\"Zero Shot Learning via Multi-scale Manifold Regularization\",\"authors\":\"Shay Deutsch, Soheil Kolouri, Kyungnam Kim, Y. Owechko, Stefano Soatto\",\"doi\":\"10.1109/CVPR.2017.562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address zero-shot learning using a new manifold alignment framework based on a localized multi-scale transform on graphs. Our inference approach includes a smoothness criterion for a function mapping nodes on a graph (visual representation) onto a linear space (semantic representation), which we optimize using multi-scale graph wavelets. The robustness of the ensuing scheme allows us to operate with automatically generated semantic annotations, resulting in an algorithm that is entirely free of manual supervision, and yet improves the state-of-the-art as measured on benchmark datasets.\",\"PeriodicalId\":6631,\"journal\":{\"name\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"30 1\",\"pages\":\"5292-5299\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2017.562\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2017.562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Zero Shot Learning via Multi-scale Manifold Regularization
We address zero-shot learning using a new manifold alignment framework based on a localized multi-scale transform on graphs. Our inference approach includes a smoothness criterion for a function mapping nodes on a graph (visual representation) onto a linear space (semantic representation), which we optimize using multi-scale graph wavelets. The robustness of the ensuing scheme allows us to operate with automatically generated semantic annotations, resulting in an algorithm that is entirely free of manual supervision, and yet improves the state-of-the-art as measured on benchmark datasets.