TiO2溶胶-凝胶纳米颗粒的诱导表面光电压

IF 0.8 Q4 NANOSCIENCE & NANOTECHNOLOGY
I. B. Dorosheva, A. Vokhmintsev, I. Weinstein, A. Rempel
{"title":"TiO2溶胶-凝胶纳米颗粒的诱导表面光电压","authors":"I. B. Dorosheva, A. Vokhmintsev, I. Weinstein, A. Rempel","doi":"10.17586/2220-8054-2023-14-4-447-453","DOIUrl":null,"url":null,"abstract":"A BSTRACT TiO 2 nanoparticles synthesized by the sol-gel method and modified by annealing in air and hydrogen atmospheres were studied by surface photovoltage spectroscopy (SPS). SPS measurements showed that the modified in air TiO 2 nanoparticles have a more intense signal than those treated in hydrogen. A linear correlation was found between the SPS and the diffuse reflectance spectra of the samples.","PeriodicalId":18782,"journal":{"name":"Nanosystems: Physics, Chemistry, Mathematics","volume":"15 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Induced surface photovoltage in TiO2 sol-gel nanoparticles\",\"authors\":\"I. B. Dorosheva, A. Vokhmintsev, I. Weinstein, A. Rempel\",\"doi\":\"10.17586/2220-8054-2023-14-4-447-453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A BSTRACT TiO 2 nanoparticles synthesized by the sol-gel method and modified by annealing in air and hydrogen atmospheres were studied by surface photovoltage spectroscopy (SPS). SPS measurements showed that the modified in air TiO 2 nanoparticles have a more intense signal than those treated in hydrogen. A linear correlation was found between the SPS and the diffuse reflectance spectra of the samples.\",\"PeriodicalId\":18782,\"journal\":{\"name\":\"Nanosystems: Physics, Chemistry, Mathematics\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanosystems: Physics, Chemistry, Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17586/2220-8054-2023-14-4-447-453\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanosystems: Physics, Chemistry, Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17586/2220-8054-2023-14-4-447-453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

采用表面光电压谱(SPS)研究了溶胶-凝胶法合成的二氧化钛纳米颗粒,并在空气和氢气气氛中进行了退火修饰。SPS测量表明,在空气中修饰的二氧化钛纳米粒子比在氢气中修饰的二氧化钛纳米粒子具有更强的信号。SPS与样品的漫反射光谱呈线性相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Induced surface photovoltage in TiO2 sol-gel nanoparticles
A BSTRACT TiO 2 nanoparticles synthesized by the sol-gel method and modified by annealing in air and hydrogen atmospheres were studied by surface photovoltage spectroscopy (SPS). SPS measurements showed that the modified in air TiO 2 nanoparticles have a more intense signal than those treated in hydrogen. A linear correlation was found between the SPS and the diffuse reflectance spectra of the samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanosystems: Physics, Chemistry, Mathematics
Nanosystems: Physics, Chemistry, Mathematics NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
1.80
自引率
11.10%
发文量
64
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信