什么是链接开放数据中的链接?网络上知识图谱之间链接的表征与评价

A. Haller, Javier D. Fernández, Maulik R. Kamdar, A. Polleres
{"title":"什么是链接开放数据中的链接?网络上知识图谱之间链接的表征与评价","authors":"A. Haller, Javier D. Fernández, Maulik R. Kamdar, A. Polleres","doi":"10.1145/3369875","DOIUrl":null,"url":null,"abstract":"Linked Open Data promises to provide guiding principles to publish interlinked knowledge graphs on the Web in the form of findable, accessible, interoperable, and reusable datasets. We argue that while as such, Linked Data may be viewed as a basis for instantiating the FAIR principles, there are still a number of open issues that cause significant data quality issues even when knowledge graphs are published as Linked Data. First, to define boundaries of single coherent knowledge graphs within Linked Data, a principled notion of what a dataset is, or, respectively, what links within and between datasets are, has been missing. Second, we argue that to enable FAIR knowledge graphs, Linked Data misses standardised findability and accessability mechanism via a single entry link. To address the first issue, we (i) propose a rigorous definition of a naming authority for a Linked Data dataset, (ii) define different link types for data in Linked datasets, (iii) provide an empirical analysis of linkage among the datasets of the Linked Open Data cloud, and (iv) analyse the dereferenceability of those links. We base our analyses and link computations on a scalable mechanism implemented on top of the HDT format, which allows us to analyse quantity and quality of different link types at scale.","PeriodicalId":15582,"journal":{"name":"Journal of Data and Information Quality (JDIQ)","volume":"10 1","pages":"1 - 34"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"What Are Links in Linked Open Data? A Characterization and Evaluation of Links between Knowledge Graphs on the Web\",\"authors\":\"A. Haller, Javier D. Fernández, Maulik R. Kamdar, A. Polleres\",\"doi\":\"10.1145/3369875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Linked Open Data promises to provide guiding principles to publish interlinked knowledge graphs on the Web in the form of findable, accessible, interoperable, and reusable datasets. We argue that while as such, Linked Data may be viewed as a basis for instantiating the FAIR principles, there are still a number of open issues that cause significant data quality issues even when knowledge graphs are published as Linked Data. First, to define boundaries of single coherent knowledge graphs within Linked Data, a principled notion of what a dataset is, or, respectively, what links within and between datasets are, has been missing. Second, we argue that to enable FAIR knowledge graphs, Linked Data misses standardised findability and accessability mechanism via a single entry link. To address the first issue, we (i) propose a rigorous definition of a naming authority for a Linked Data dataset, (ii) define different link types for data in Linked datasets, (iii) provide an empirical analysis of linkage among the datasets of the Linked Open Data cloud, and (iv) analyse the dereferenceability of those links. We base our analyses and link computations on a scalable mechanism implemented on top of the HDT format, which allows us to analyse quantity and quality of different link types at scale.\",\"PeriodicalId\":15582,\"journal\":{\"name\":\"Journal of Data and Information Quality (JDIQ)\",\"volume\":\"10 1\",\"pages\":\"1 - 34\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Data and Information Quality (JDIQ)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3369875\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Data and Information Quality (JDIQ)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3369875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

关联开放数据承诺提供指导原则,以可查找、可访问、可互操作和可重用的数据集的形式在Web上发布相互关联的知识图。我们认为,尽管如此,关联数据可以被视为实例化FAIR原则的基础,但即使将知识图作为关联数据发布,仍有许多悬而未决的问题会导致重大的数据质量问题。首先,为了定义关联数据中单个连贯知识图的边界,缺乏一个关于数据集是什么,或者数据集内部和数据集之间是什么链接的原则性概念。其次,我们认为,为了实现公平的知识图谱,关联数据通过单一入口链接错过了标准化的可查找性和可访问性机制。为了解决第一个问题,我们(i)提出关联数据集命名权限的严格定义,(ii)为关联数据集中的数据定义不同的链接类型,(iii)提供关联开放数据云数据集之间链接的实证分析,以及(iv)分析这些链接的可解引用性。我们的分析和链接计算基于HDT格式之上的可扩展机制,这使我们能够大规模地分析不同链接类型的数量和质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
What Are Links in Linked Open Data? A Characterization and Evaluation of Links between Knowledge Graphs on the Web
Linked Open Data promises to provide guiding principles to publish interlinked knowledge graphs on the Web in the form of findable, accessible, interoperable, and reusable datasets. We argue that while as such, Linked Data may be viewed as a basis for instantiating the FAIR principles, there are still a number of open issues that cause significant data quality issues even when knowledge graphs are published as Linked Data. First, to define boundaries of single coherent knowledge graphs within Linked Data, a principled notion of what a dataset is, or, respectively, what links within and between datasets are, has been missing. Second, we argue that to enable FAIR knowledge graphs, Linked Data misses standardised findability and accessability mechanism via a single entry link. To address the first issue, we (i) propose a rigorous definition of a naming authority for a Linked Data dataset, (ii) define different link types for data in Linked datasets, (iii) provide an empirical analysis of linkage among the datasets of the Linked Open Data cloud, and (iv) analyse the dereferenceability of those links. We base our analyses and link computations on a scalable mechanism implemented on top of the HDT format, which allows us to analyse quantity and quality of different link types at scale.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信