{"title":"探讨电荷密度分析鉴定的非共价接触网络对氧化还原酶BacC的影响","authors":"K. Perinbam, H. Balaram, T. N. Guru Row, B. Gopal","doi":"10.1093/protein/gzx006","DOIUrl":null,"url":null,"abstract":"Bacillus subtilis BacC is an oxidoreductase involved in the biosynthesis of the potent antibiotic bacilysin. The crystal structure of BacC was determined at 1.19 Å resolution. An experimental charge density approach was used to calculate non-covalent interactions within the monomer and across the dimeric interface of BacC. This interaction network, in turn, enabled an analysis of non-covalently connected paths that span the protein structure. One of the pathways of non-covalent interactions was examined by mutational analysis. Biochemical analysis of BacC mutants with potential disruptions in non-covalent interactions along this path revealed that residues that form nodes in pathways of non-covalent interactions influence catalytic activity more than others in a similar chemical environment. Furthermore, we note that nodes in the non-covalent interaction networks are co-localized with compensatory mutation sites identified by multiple sequence alignment of proteins with low sequence similarity to BacC. Put together, this analysis supports the hypothesis that non-covalent nodes represent conserved structural features that can impact the catalytic activity of an enzyme.","PeriodicalId":20681,"journal":{"name":"Protein Engineering, Design and Selection","volume":"46 1","pages":"263–270"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Probing the influence of non-covalent contact networks identified by charge density analysis on the oxidoreductase BacC\",\"authors\":\"K. Perinbam, H. Balaram, T. N. Guru Row, B. Gopal\",\"doi\":\"10.1093/protein/gzx006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bacillus subtilis BacC is an oxidoreductase involved in the biosynthesis of the potent antibiotic bacilysin. The crystal structure of BacC was determined at 1.19 Å resolution. An experimental charge density approach was used to calculate non-covalent interactions within the monomer and across the dimeric interface of BacC. This interaction network, in turn, enabled an analysis of non-covalently connected paths that span the protein structure. One of the pathways of non-covalent interactions was examined by mutational analysis. Biochemical analysis of BacC mutants with potential disruptions in non-covalent interactions along this path revealed that residues that form nodes in pathways of non-covalent interactions influence catalytic activity more than others in a similar chemical environment. Furthermore, we note that nodes in the non-covalent interaction networks are co-localized with compensatory mutation sites identified by multiple sequence alignment of proteins with low sequence similarity to BacC. Put together, this analysis supports the hypothesis that non-covalent nodes represent conserved structural features that can impact the catalytic activity of an enzyme.\",\"PeriodicalId\":20681,\"journal\":{\"name\":\"Protein Engineering, Design and Selection\",\"volume\":\"46 1\",\"pages\":\"263–270\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protein Engineering, Design and Selection\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/protein/gzx006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Engineering, Design and Selection","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/protein/gzx006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Probing the influence of non-covalent contact networks identified by charge density analysis on the oxidoreductase BacC
Bacillus subtilis BacC is an oxidoreductase involved in the biosynthesis of the potent antibiotic bacilysin. The crystal structure of BacC was determined at 1.19 Å resolution. An experimental charge density approach was used to calculate non-covalent interactions within the monomer and across the dimeric interface of BacC. This interaction network, in turn, enabled an analysis of non-covalently connected paths that span the protein structure. One of the pathways of non-covalent interactions was examined by mutational analysis. Biochemical analysis of BacC mutants with potential disruptions in non-covalent interactions along this path revealed that residues that form nodes in pathways of non-covalent interactions influence catalytic activity more than others in a similar chemical environment. Furthermore, we note that nodes in the non-covalent interaction networks are co-localized with compensatory mutation sites identified by multiple sequence alignment of proteins with low sequence similarity to BacC. Put together, this analysis supports the hypothesis that non-covalent nodes represent conserved structural features that can impact the catalytic activity of an enzyme.