基于模型的旋转不变纹理分类

P. Campisi, A. Neri, G. Scarano
{"title":"基于模型的旋转不变纹理分类","authors":"P. Campisi, A. Neri, G. Scarano","doi":"10.1109/ICIP.2002.1038918","DOIUrl":null,"url":null,"abstract":"In this paper a model based texture classification procedure robust to sample rotation is presented. The texture is modeled as the output of a linear system driven by a binary image. This latter retains the morphological characteristics of the texture and it is specified by its spatial autocorrelation function (ACF). We show that features extracted from the ACF of the binary excitation suffice to represent the texture for classification purposes. Specifically, we employ a classical moment invariants based technique to classify the ACF and the resulting classification procedure is thus inherently rotation invariant. Experimental results show that this approach allows obtaining high correct rotation-invariant classification rates while reducing the size of the feature space and the computational burden.","PeriodicalId":74572,"journal":{"name":"Proceedings. International Conference on Image Processing","volume":"17 1","pages":"III-III"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Model based rotation-invariant texture classification\",\"authors\":\"P. Campisi, A. Neri, G. Scarano\",\"doi\":\"10.1109/ICIP.2002.1038918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a model based texture classification procedure robust to sample rotation is presented. The texture is modeled as the output of a linear system driven by a binary image. This latter retains the morphological characteristics of the texture and it is specified by its spatial autocorrelation function (ACF). We show that features extracted from the ACF of the binary excitation suffice to represent the texture for classification purposes. Specifically, we employ a classical moment invariants based technique to classify the ACF and the resulting classification procedure is thus inherently rotation invariant. Experimental results show that this approach allows obtaining high correct rotation-invariant classification rates while reducing the size of the feature space and the computational burden.\",\"PeriodicalId\":74572,\"journal\":{\"name\":\"Proceedings. International Conference on Image Processing\",\"volume\":\"17 1\",\"pages\":\"III-III\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. International Conference on Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2002.1038918\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2002.1038918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

提出了一种对样本旋转具有鲁棒性的基于模型的纹理分类方法。纹理被建模为由二值图像驱动的线性系统的输出。后者保留了纹理的形态特征,并由其空间自相关函数(ACF)来指定。我们表明,从二元激励的ACF中提取的特征足以表示用于分类目的的纹理。具体来说,我们采用经典的基于矩不变量的技术对ACF进行分类,从而得到的分类过程本质上是旋转不变量的。实验结果表明,该方法在降低特征空间大小和计算量的同时,获得了较高的正确旋转不变分类率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model based rotation-invariant texture classification
In this paper a model based texture classification procedure robust to sample rotation is presented. The texture is modeled as the output of a linear system driven by a binary image. This latter retains the morphological characteristics of the texture and it is specified by its spatial autocorrelation function (ACF). We show that features extracted from the ACF of the binary excitation suffice to represent the texture for classification purposes. Specifically, we employ a classical moment invariants based technique to classify the ACF and the resulting classification procedure is thus inherently rotation invariant. Experimental results show that this approach allows obtaining high correct rotation-invariant classification rates while reducing the size of the feature space and the computational burden.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信