{"title":"基于多相信息理论的航空图像边缘检测算法","authors":"A. Elaraby, Z. Al-Ameen","doi":"10.32890/jict2022.21.2.4","DOIUrl":null,"url":null,"abstract":"Edge detection is the diverse way used to detect boundaries in digital images. Many methods exist to achieve this purpose, yet not all of them can produce results with high detection ratios. Some may have high complexity, and others may require numerous inputs. Therefore, a new multi-phase algorithm that depends on information theory is introduced in this article to detect the edges of aerial images adequately in a fully automatic manner. The proposed algorithm operated by utilizing Shannon and Hill entropies with specific rules along with a non-complex edge detector to record the vital edge information. The proposed algorithm was examined with different aerial images, its performances appraised against six existing approaches, and the outcomes were assessed using three image evaluation methods. From the results, promising performances were recorded as the proposed algorithm performed the best in many aspects and provided satisfactory results. The results of the proposed algorithm had high edge detection ratios as it was able to capture most of the significant edges of the given images. Such findings make the proposed algorithm desirable to be used as a key image detection method with other image-related applications.","PeriodicalId":39396,"journal":{"name":"International Journal of Information and Communication Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Phase Information Theory-Based Algorithm for Edge Detection of Aerial Images\",\"authors\":\"A. Elaraby, Z. Al-Ameen\",\"doi\":\"10.32890/jict2022.21.2.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Edge detection is the diverse way used to detect boundaries in digital images. Many methods exist to achieve this purpose, yet not all of them can produce results with high detection ratios. Some may have high complexity, and others may require numerous inputs. Therefore, a new multi-phase algorithm that depends on information theory is introduced in this article to detect the edges of aerial images adequately in a fully automatic manner. The proposed algorithm operated by utilizing Shannon and Hill entropies with specific rules along with a non-complex edge detector to record the vital edge information. The proposed algorithm was examined with different aerial images, its performances appraised against six existing approaches, and the outcomes were assessed using three image evaluation methods. From the results, promising performances were recorded as the proposed algorithm performed the best in many aspects and provided satisfactory results. The results of the proposed algorithm had high edge detection ratios as it was able to capture most of the significant edges of the given images. Such findings make the proposed algorithm desirable to be used as a key image detection method with other image-related applications.\",\"PeriodicalId\":39396,\"journal\":{\"name\":\"International Journal of Information and Communication Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information and Communication Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32890/jict2022.21.2.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information and Communication Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32890/jict2022.21.2.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
Multi-Phase Information Theory-Based Algorithm for Edge Detection of Aerial Images
Edge detection is the diverse way used to detect boundaries in digital images. Many methods exist to achieve this purpose, yet not all of them can produce results with high detection ratios. Some may have high complexity, and others may require numerous inputs. Therefore, a new multi-phase algorithm that depends on information theory is introduced in this article to detect the edges of aerial images adequately in a fully automatic manner. The proposed algorithm operated by utilizing Shannon and Hill entropies with specific rules along with a non-complex edge detector to record the vital edge information. The proposed algorithm was examined with different aerial images, its performances appraised against six existing approaches, and the outcomes were assessed using three image evaluation methods. From the results, promising performances were recorded as the proposed algorithm performed the best in many aspects and provided satisfactory results. The results of the proposed algorithm had high edge detection ratios as it was able to capture most of the significant edges of the given images. Such findings make the proposed algorithm desirable to be used as a key image detection method with other image-related applications.
期刊介绍:
IJICT is a refereed journal in the field of information and communication technology (ICT), providing an international forum for professionals, engineers and researchers. IJICT reports the new paradigms in this emerging field of technology and envisions the future developments in the frontier areas. The journal addresses issues for the vertical and horizontal applications in this area. Topics covered include: -Information theory/coding- Information/IT/network security, standards, applications- Internet/web based systems/products- Data mining/warehousing- Network planning, design, administration- Sensor/ad hoc networks- Human-computer intelligent interaction, AI- Computational linguistics, digital speech- Distributed/cooperative media- Interactive communication media/content- Social interaction, mobile communications- Signal representation/processing, image processing- Virtual reality, cyber law, e-governance- Microprocessor interfacing, hardware design- Control of industrial processes, ERP/CRM/SCM