{"title":"由于热浮力,辐射和耗散热量对平行通道内Williamson纳米流体流动的影响","authors":"P. C. Pattanaik, S. Mishra, S. Jena, P. Pattnaik","doi":"10.1177/23977914221080046","DOIUrl":null,"url":null,"abstract":"The present investigation reveals the non-Newtonian flow characteristics for the Williamson nanofluid through a parallel channel due to the conjunction of thermal buoyancy. As a good conductor of heat, the metal like Copper is treated as the nanoparticles submerged into the base fluids water and kerosene to perform the flow phenomena within the channel embedding with the porous medium. For the involvement of the applied magnetic field and permeability it is not wise to neglect the impact of dissipative heat energy. Therefore, both the Joule and the Darcy dissipations are also considered those are affecting the thermal properties. The model is developed considering the Mintsa model thermophysical properties of conductivity and the Gharesim model viscosity for the enhancement of heat transport properties. In various industrial as well as engineering applications nanofluids are used as a best coolant. The use of suitable similarity variables and stream function helps to transform the governing nonlinear differential equations into nonlinear ordinary. Further, an approximate analytical approach such as Adomian Decomposition Method is used to handle those transformed equations. The current outcomes obtained from the behavior of various flow characteristics are presented via graphs and table to validate the results. The observation shows that with an augmentation in the particle concentration, fluid velocity retards however the retardation in case of water-based nanofluid overrides the case of kerosene-based nanofluid. Further, particle concentration enriches the nanofluid temperature greatly in comparison to pure fluid.","PeriodicalId":44789,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","volume":"11 1","pages":"3 - 18"},"PeriodicalIF":4.2000,"publicationDate":"2022-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Impact of radiative and dissipative heat on the Williamson nanofluid flow within a parallel channel due to thermal buoyancy\",\"authors\":\"P. C. Pattanaik, S. Mishra, S. Jena, P. Pattnaik\",\"doi\":\"10.1177/23977914221080046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present investigation reveals the non-Newtonian flow characteristics for the Williamson nanofluid through a parallel channel due to the conjunction of thermal buoyancy. As a good conductor of heat, the metal like Copper is treated as the nanoparticles submerged into the base fluids water and kerosene to perform the flow phenomena within the channel embedding with the porous medium. For the involvement of the applied magnetic field and permeability it is not wise to neglect the impact of dissipative heat energy. Therefore, both the Joule and the Darcy dissipations are also considered those are affecting the thermal properties. The model is developed considering the Mintsa model thermophysical properties of conductivity and the Gharesim model viscosity for the enhancement of heat transport properties. In various industrial as well as engineering applications nanofluids are used as a best coolant. The use of suitable similarity variables and stream function helps to transform the governing nonlinear differential equations into nonlinear ordinary. Further, an approximate analytical approach such as Adomian Decomposition Method is used to handle those transformed equations. The current outcomes obtained from the behavior of various flow characteristics are presented via graphs and table to validate the results. The observation shows that with an augmentation in the particle concentration, fluid velocity retards however the retardation in case of water-based nanofluid overrides the case of kerosene-based nanofluid. Further, particle concentration enriches the nanofluid temperature greatly in comparison to pure fluid.\",\"PeriodicalId\":44789,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems\",\"volume\":\"11 1\",\"pages\":\"3 - 18\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2022-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/23977914221080046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/23977914221080046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Impact of radiative and dissipative heat on the Williamson nanofluid flow within a parallel channel due to thermal buoyancy
The present investigation reveals the non-Newtonian flow characteristics for the Williamson nanofluid through a parallel channel due to the conjunction of thermal buoyancy. As a good conductor of heat, the metal like Copper is treated as the nanoparticles submerged into the base fluids water and kerosene to perform the flow phenomena within the channel embedding with the porous medium. For the involvement of the applied magnetic field and permeability it is not wise to neglect the impact of dissipative heat energy. Therefore, both the Joule and the Darcy dissipations are also considered those are affecting the thermal properties. The model is developed considering the Mintsa model thermophysical properties of conductivity and the Gharesim model viscosity for the enhancement of heat transport properties. In various industrial as well as engineering applications nanofluids are used as a best coolant. The use of suitable similarity variables and stream function helps to transform the governing nonlinear differential equations into nonlinear ordinary. Further, an approximate analytical approach such as Adomian Decomposition Method is used to handle those transformed equations. The current outcomes obtained from the behavior of various flow characteristics are presented via graphs and table to validate the results. The observation shows that with an augmentation in the particle concentration, fluid velocity retards however the retardation in case of water-based nanofluid overrides the case of kerosene-based nanofluid. Further, particle concentration enriches the nanofluid temperature greatly in comparison to pure fluid.
期刊介绍:
Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems is a peer-reviewed scientific journal published since 2004 by SAGE Publications on behalf of the Institution of Mechanical Engineers. The journal focuses on research in the field of nanoengineering, nanoscience and nanotechnology and aims to publish high quality academic papers in this field. In addition, the journal is indexed in several reputable academic databases and abstracting services, including Scopus, Compendex, and CSA's Advanced Polymers Abstracts, Composites Industry Abstracts, and Earthquake Engineering Abstracts.