类quesne环形球面谐振子势和伪自旋对称性

Zhang Min-Cang
{"title":"类quesne环形球面谐振子势和伪自旋对称性","authors":"Zhang Min-Cang","doi":"10.7498/aps.58.712","DOIUrl":null,"url":null,"abstract":"A Quesne-like ring-shaped spherical harmonic oscillator potential is put foword and studied for spin 1/2 particles based on the Dirac equation, the Dirac Hamiltonian contains a scalar and a vector Quesne-like ring-shaped harmonic oscillator potentials. Setting Σ = S ( r )+V( r )=0,we obtain the bound state solutions and eigenenergies with the two-component approach. The result shows the pseudospin symmetry exists in the Quesne-like ring-shaped harmonic oscillator potential. The general properties of both the ring-shaped spherical harmonic oscillator potential and the ring-shaped non-spherical harmonic oscillator potential are discussed.","PeriodicalId":17047,"journal":{"name":"Journal of Shaanxi Normal University","volume":"20 1","pages":"712-716"},"PeriodicalIF":0.0000,"publicationDate":"2009-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Quesne-like ring-shaped spherical harmonic oscillator potential and pseudospin symmetry\",\"authors\":\"Zhang Min-Cang\",\"doi\":\"10.7498/aps.58.712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Quesne-like ring-shaped spherical harmonic oscillator potential is put foword and studied for spin 1/2 particles based on the Dirac equation, the Dirac Hamiltonian contains a scalar and a vector Quesne-like ring-shaped harmonic oscillator potentials. Setting Σ = S ( r )+V( r )=0,we obtain the bound state solutions and eigenenergies with the two-component approach. The result shows the pseudospin symmetry exists in the Quesne-like ring-shaped harmonic oscillator potential. The general properties of both the ring-shaped spherical harmonic oscillator potential and the ring-shaped non-spherical harmonic oscillator potential are discussed.\",\"PeriodicalId\":17047,\"journal\":{\"name\":\"Journal of Shaanxi Normal University\",\"volume\":\"20 1\",\"pages\":\"712-716\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Shaanxi Normal University\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7498/aps.58.712\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Shaanxi Normal University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7498/aps.58.712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

基于狄拉克方程,提出并研究了自旋为1/2粒子的类quese环形球谐子势,狄拉克哈密顿量包含一个标量和一个矢量类quese环形谐振子势。设Σ = S (r)+V(r)=0,用双分量法得到束缚态解和特征能。结果表明,类quesne环形谐振子势中存在赝自旋对称性。讨论了环形球面谐振子势和环形非球面谐振子势的一般性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quesne-like ring-shaped spherical harmonic oscillator potential and pseudospin symmetry
A Quesne-like ring-shaped spherical harmonic oscillator potential is put foword and studied for spin 1/2 particles based on the Dirac equation, the Dirac Hamiltonian contains a scalar and a vector Quesne-like ring-shaped harmonic oscillator potentials. Setting Σ = S ( r )+V( r )=0,we obtain the bound state solutions and eigenenergies with the two-component approach. The result shows the pseudospin symmetry exists in the Quesne-like ring-shaped harmonic oscillator potential. The general properties of both the ring-shaped spherical harmonic oscillator potential and the ring-shaped non-spherical harmonic oscillator potential are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信